MiniGPT-4/demo.py

181 lines
6.5 KiB
Python

import argparse
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import gradio as gr
from minigpt4.common.config import Config
from minigpt4.common.dist_utils import get_rank
from minigpt4.common.registry import registry
from minigpt4.conversation.conversation import Chat, CONV_VISION
# imports modules for registration
from minigpt4.datasets.builders import *
from minigpt4.models import *
from minigpt4.processors import *
from minigpt4.runners import *
from minigpt4.tasks import *
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--cfg-path", required=True, help="path to configuration file.")
parser.add_argument("--gpu-id", type=int, default=0, help="specify the gpu to load the model.")
parser.add_argument(
"--options",
nargs="+",
help="override some settings in the used config, the key-value pair "
"in xxx=yyy format will be merged into config file (deprecate), "
"change to --cfg-options instead.",
)
args = parser.parse_args()
return args
def setup_seeds(config):
seed = config.run_cfg.seed + get_rank()
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
# ========================================
# Model Initialization
# ========================================
print('Initializing Chat')
args = parse_args()
cfg = Config(args)
model_config = cfg.model_cfg
model_config.device_8bit = args.gpu_id
model_cls = registry.get_model_class(model_config.arch)
model = model_cls.from_config(model_config).to('cuda:{}'.format(args.gpu_id))
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
chat = Chat(model, vis_processor, device='cuda:{}'.format(args.gpu_id))
print('Initialization Finished')
# ========================================
# Gradio Setting
# ========================================
def gradio_reset():
# reset chatbot, image, text_input, upload_button, chat_state, img_list, img_emb_list, gallery
return None, \
gr.update(value=None, interactive=True), \
gr.update(placeholder='Please upload your image first', interactive=False), \
gr.update(value="Upload & Start Chat", interactive=True), \
CONV_VISION.copy(), \
[], \
[], \
[]
def upload_img(gr_img, chat_state, img_list, img_emb_list):
if gr_img is None:
return None, None, gr.update(interactive=True), chat_state, img_list, img_emb_list
img_list.append(gr_img)
# upload an image to the chat
chat.upload_img(gr_img, chat_state, img_emb_list)
# update image, text_input, upload_button, chat_state, gallery, img_emb_list
return gr.update(value=None, interactive=False), \
gr.update(interactive=True, placeholder='Type and press Enter'), \
gr.update(value="Send more images after sending a message", interactive=False), \
chat_state, \
img_list, \
img_emb_list
def gradio_ask(user_message, chatbot, chat_state):
if len(user_message) == 0:
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
return '', chatbot, chat_state
def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature):
llm_message = chat.answer(conv=chat_state,
img_list=img_list,
num_beams=num_beams,
temperature=temperature,
max_new_tokens=300,
max_length=2000)[0]
chatbot[-1][1] = llm_message
# update chatbot, chat_state, image, upload_button
return chatbot, \
chat_state, \
gr.update(interactive=True), \
gr.update(value="Send more image", interactive=True)
title = """<h1 align="center">Demo of MiniGPT-4</h1>"""
description = """<h3>This is the demo of MiniGPT-4. Upload your images and start chatting!</h3>"""
article = """<p><a href='https://minigpt-4.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p><a href='https://github.com/Vision-CAIR/MiniGPT-4'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p><a href='https://raw.githubusercontent.com/Vision-CAIR/MiniGPT-4/main/MiniGPT_4.pdf'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p>
"""
#TODO show examples below
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown(article)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil")
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary")
clear = gr.Button("Restart")
num_beams = gr.Slider(
minimum=1,
maximum=10,
value=1,
step=1,
interactive=True,
label="beam search numbers)",
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
with gr.Column():
chat_state = gr.State(CONV_VISION.copy())
img_list = gr.State([])
img_emb_list = gr.State([])
gallery = gr.Gallery(label="Uploaded Images", show_label=True) \
.style(rows=[1], object_fit="scale-down", height="500px", preview=True)
chatbot = gr.Chatbot(label='MiniGPT-4')
text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False)
upload_button.click(upload_img, [image, chat_state, img_list, img_emb_list],
[image, text_input, upload_button, chat_state, gallery, img_emb_list])
text_input \
.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]) \
.then(gradio_answer,
[chatbot, chat_state, img_emb_list, num_beams, temperature],
[chatbot, chat_state, image, upload_button])
clear.click(gradio_reset,
None,
[chatbot, image, text_input, upload_button, chat_state, img_list, img_emb_list, gallery],
queue=False)
demo.launch(share=True, enable_queue=True)