MiniGPT-4/minigpt4/models/bind_gpt4.py
Zhijie Lin 60243d328e update
2023-05-26 15:30:22 +08:00

236 lines
9.7 KiB
Python

import random
from typing import Dict, Tuple, List
import torch
import torch.nn as nn
import re
from torch import Tensor
from transformers import LlamaTokenizer
from imagebind.models.image_bind import imagebind_huge, ImageBindJoiner, ModalityType
from minigpt4.common.registry import registry
from minigpt4.models.blip2 import BaseModel
from minigpt4.models.modeling_llama import LlamaForCausalLM
def filter_prompt(input_embeds: Dict[str, Tensor], prompt_list: List[str]) -> List[str]:
if not prompt_list:
return prompt_list
input_modal_set = set([k.title() for k in input_embeds if input_embeds[k] is not None])
prompt_modal_sets = [set(re.findall("<([^<>]+)><ModalityHere></\\1>", prompt)) for prompt in prompt_list]
results = [prompt_list[i] for i, prompt_modal_set in enumerate(prompt_modal_sets) if
prompt_modal_set == input_modal_set]
return results
def arrange_modalities(input_embeds: Dict[str, Tensor], prompt: str) -> List[Tensor]:
prompt_modalities = re.findall("<([^<>]+)><ModalityHere></\\1>", prompt)
return [input_embeds[modality.lower()] for modality in prompt_modalities]
def concat_all_embeddings(input_embeds: Dict[str, Tensor], dim: int) -> Tensor:
embeds = [input_embeds[key] for key in input_embeds if input_embeds[key] is not None]
return torch.cat(embeds, dim=dim)
def filter_modalities(inputs):
filtered_inputs = {}
for k in ModalityType.__dict__.values():
if k in inputs:
filtered_inputs[k] = inputs[k]
return filtered_inputs
@registry.register_model("bind_gpt4")
class BindGPT4(BaseModel):
"""
ImageBind GPT-LLAMA model.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain_vicuna": "configs/models/bindgpt4.yaml",
}
def __init__(
self,
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
freeze_imagebind=True,
freeze_qformer=False,
num_query_token=32,
llama_model="",
prompt_path="",
prompt_template="",
max_txt_len=32,
end_sym='\n',
low_resource=False, # use 8 bit and put vit in cpu
device_8bit=0 # the device of 8bit model should be set when loading and cannot be changed anymore.
):
super().__init__()
assert not low_resource, "Low Resource Mode is Currently Unavailable."
self.low_resource = low_resource
print('Loading ImageBind')
self.multimodal_encoder = imagebind_huge(pretrained=True, freeze_imagebind=freeze_imagebind)
print('Loading ImageBind Done')
print(f'Loading LLAMA from {llama_model}')
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False)
self.llama_tokenizer.pad_token = self.llama_tokenizer.eos_token
self.llama_model = LlamaForCausalLM.from_pretrained(
llama_model,
torch_dtype=torch.float16,
)
for name, param in self.llama_model.named_parameters():
param.requires_grad = False
print('Loading LLAMA Done')
print('Loading Q-Former and Adapter/Projector')
self.multimodal_joiner = ImageBindJoiner(vision_query_token_num=num_query_token,
vision_qformer_frozen=freeze_qformer,
vision_post_dims=[768, self.llama_model.config.hidden_size],
audio_query_token_num=num_query_token,
audio_post_dims=[768, self.llama_model.config.hidden_size]
# vision_qformer_model=q_former_model,
# vision_pre_dims=(1280, 1408)
)
print('Loading Q-Former and Adapter/Projector Done')
self.max_txt_len = max_txt_len
self.end_sym = end_sym
print("Preparing Prompts")
if prompt_path:
with open(prompt_path, 'r') as f:
raw_prompts = f.read().splitlines()
self.prompt_list = [prompt_template.format(p) for p in raw_prompts]
print('Load {} training prompts'.format(len(self.prompt_list)))
print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
else:
self.prompt_list = []
print("Preparing Prompts Done")
def encode_inputs(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]:
imagebind_outputs = self.multimodal_encoder(inputs)
llama_inputs = self.multimodal_joiner(imagebind_outputs)
return llama_inputs
def prompt_wrap(self, inputs: Dict[str, Tensor], prompt: str) -> Tuple[Tensor, Tensor]:
if not prompt:
input_embeds = concat_all_embeddings(inputs, dim=1)
attns_input = torch.ones(input_embeds.size()[:-1], dtype=torch.long).to(input_embeds.device)
return input_embeds, attns_input
input_embeds_list = arrange_modalities(inputs, prompt)
batch_size = input_embeds_list[0].shape[0]
prompt_slices = prompt.split('<ModalityHere>')
prompt_tokens = [self.llama_tokenizer(prompt_slice, return_tensors="pt", add_special_tokens=False)
.to(input_embeds_list[0].device) for prompt_slice in prompt_slices]
prompt_embeds = [self.llama_model.model.embed_tokens(prompt_token.input_ids).expand(batch_size, -1, -1)
for prompt_token in prompt_tokens]
result_embeds = [emb for pair in zip(prompt_embeds[:-1], input_embeds_list)
for emb in pair] + [prompt_embeds[-1]]
wrapped_input_embeds = torch.cat(result_embeds, dim=1)
wrapped_atts_input = torch.ones(wrapped_input_embeds.size()[:-1],
dtype=torch.long).to(wrapped_input_embeds.device)
return wrapped_input_embeds, wrapped_atts_input
def forward(self, inputs: Dict[str, Tensor]) -> Dict[str, Tensor]:
# filter `inputs` as it may contain informatioins other than modalities
modality_inputs = filter_modalities(inputs)
embeds = self.encode_inputs(modality_inputs)
filtered_prompts = filter_prompt(embeds, self.prompt_list)
if filtered_prompts:
prompt = random.choice(filtered_prompts)
else:
prompt = None
input_embs, input_atts = self.prompt_wrap(embeds, prompt)
# NOTE: No modifications from the next line to the end. Except for the autocast part.
self.llama_tokenizer.padding_side = "right"
text = [t + self.end_sym for t in inputs["text_input"]]
to_regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False
).to(input_embs.device)
targets = to_regress_tokens.input_ids.masked_fill(
to_regress_tokens.input_ids == self.llama_tokenizer.pad_token_id, -100
)
empty_targets = (
torch.ones([input_atts.shape[0], input_atts.shape[1] + 1],
dtype=torch.long).to(input_embs.device).fill_(-100) # plus one for bos
)
targets = torch.cat([empty_targets, targets], dim=1)
batch_size = input_embs.shape[0]
bos = torch.ones([batch_size, 1],
dtype=to_regress_tokens.input_ids.dtype,
device=to_regress_tokens.input_ids.device) * self.llama_tokenizer.bos_token_id
bos_embeds = self.llama_model.model.embed_tokens(bos)
atts_bos = input_atts[:, :1]
to_regress_embeds = self.llama_model.model.embed_tokens(to_regress_tokens.input_ids)
inputs_embeds = torch.cat([bos_embeds, input_embs, to_regress_embeds], dim=1)
attention_mask = torch.cat([atts_bos, input_atts, to_regress_tokens.attention_mask], dim=1)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
)
loss = outputs.loss
return {"loss": loss}
@classmethod
def from_config(cls, cfg):
q_former_model = cfg.get("q_former_model",
"https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth")
num_query_token = cfg.get("num_query_token")
llama_model = cfg.get("llama_model")
freeze_imagebind = cfg.get("freeze_imagebind", True)
freeze_qformer = cfg.get("freeze_qformer", True)
low_resource = cfg.get("low_resource", False)
device_8bit = cfg.get("device_8bit", 0)
prompt_path = cfg.get("prompt_path", "")
prompt_template = cfg.get("prompt_template", "")
max_txt_len = cfg.get("max_txt_len", 32)
end_sym = cfg.get("end_sym", '\n')
model = cls(
q_former_model=q_former_model,
freeze_imagebind=freeze_imagebind,
freeze_qformer=freeze_qformer,
num_query_token=num_query_token,
llama_model=llama_model,
prompt_path=prompt_path,
prompt_template=prompt_template,
max_txt_len=max_txt_len,
end_sym=end_sym,
low_resource=low_resource,
device_8bit=device_8bit,
)
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
if ckpt_path:
print("Load ImageBind-LLM Checkpoint: {}".format(ckpt_path))
ckpt = torch.load(ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt['model'], strict=False)
return model