mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-04 18:10:47 +00:00
3.7 KiB
3.7 KiB
Evaluation Instruction for MiniGPT-v2
Data preparation
Images download
Image source | Download path |
---|---|
OKVQA | annotations images |
gqa | annotations images |
hateful meme | images and annotations |
iconqa | images and annotation |
vizwiz | images and annotation |
RefCOCO | annotations |
RefCOCO+ | annotations |
RefCOCOg | annotations |
Evaluation dataset structure
${MINIGPTv2_EVALUATION_DATASET}
├── gqa
│ └── test_balanced_questions.json
│ ├── testdev_balanced_questions.json
│ ├── gqa_images
├── hateful_meme
│ └── hm_images
│ ├── dev.jsonl
├── iconvqa
│ └── iconvqa_images
│ ├── choose_text_val.json
├── vizwiz
│ └── vizwiz_images
│ ├── val.json
├── vsr
│ └── vsr_images
├── okvqa
│ ├── okvqa_test_split.json
│ ├── mscoco_val2014_annotations_clean.json
│ ├── OpenEnded_mscoco_val2014_questions_clean.json
├── refcoco
│ └── instances.json
│ ├── refs(google).p
│ ├── refs(unc).p
├── refcoco+
│ └── instances.json
│ ├── refs(unc).p
├── refercocog
│ └── instances.json
│ ├── refs(google).p
│ ├── refs(und).p
...
environment setup
export PYTHONPATH=$PYTHONPATH:/path/to/directory/of/MiniGPT-4
start evalauting RefCOCO, RefCOCO+, RefCOCOg
port=port_number
cfg_path=/path/to/eval_configs/minigptv2_eval.yaml
save_path=/path/to/save/path
ckpt=/path/to/evaluation/checkpoint
split=data_evaluation_split
dataset=dataset_name
dataset | split |
---|---|
refcoco | val, testA, testB |
refcoco+ | val, testA, testB |
refcocog | val, test |
torchrun --master-port ${port} --nproc_per_node 1 eval_ref.py \
--cfg-path ${cfg_path} --img_path ${IMG_PATH} --eval_file_path ${eval_file_path} --save_path ${save_path} \
--ckpt ${ckpt} --split ${split} --dataset ${dataset} --lora_r 64 --lora_alpha 16 \
--batch_size 10 --max_new_tokens 20 --resample
start evaluating visual question answering
port=port_number
cfg_path=/path/to/eval_configs/minigptv2_eval.yaml
eval_file_path=/path/to/eval/annotation/path
image_path=/path/to/eval/image/path
save_path=/path/to/save/path
ckpt=/path/to/evaluation/checkpoint
split=evaluation_data_split
dataset=dataset_type
dataset | image_path | eval_file_path |
---|---|---|
okvqa | coco_2017 | /path/to/okvqa/folder |
vizwiz | vizwiz_images | /path/to/vizwiz/folder |
iconvqa | iconvqa_images | /path/to/iconvqa/folder |
gqa | gqa_images | /path/to/gqa/folder |
vsr | vsr_images | None |
hateful meme | hm_images | /path/to/hateful_mem/folder |
torchrun --master-port ${port} --nproc_per_node 1 eval_vqa.py \
--cfg-path ${cfg_path} --img_path ${image_path} --eval_file_path ${eval_file_path} --save_path ${save_path} \
--ckpt ${ckpt} --split ${split} --dataset ${dataset} --lora_r 64 --lora_alpha 16 \
--batch_size 10 --max_new_tokens 20 --resample