mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-05 02:20:47 +00:00
403 lines
16 KiB
Python
403 lines
16 KiB
Python
import logging
|
|
import random
|
|
|
|
import torch
|
|
from torch.cuda.amp import autocast as autocast
|
|
import torch.nn as nn
|
|
|
|
from minigpt4.common.registry import registry
|
|
from minigpt4.models.base_model import BaseModel
|
|
from transformers import StoppingCriteria, StoppingCriteriaList
|
|
|
|
from minigpt4.conversation.conversation import StoppingCriteriaSub
|
|
|
|
|
|
|
|
class MiniGPTBase(BaseModel):
|
|
"""
|
|
Base class for MiniGPT-4 and MiniGPT-v2
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vit_model="eva_clip_g",
|
|
img_size=224,
|
|
drop_path_rate=0,
|
|
use_grad_checkpoint=False,
|
|
vit_precision="fp16",
|
|
freeze_vit=True,
|
|
llama_model="",
|
|
max_txt_len=32,
|
|
max_context_len=3800,
|
|
prompt_template="",
|
|
end_sym='\n',
|
|
low_resource=False, # use 8 bit and put vit in cpu
|
|
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
|
|
lora_r=0, # lora_r means lora is not used
|
|
lora_target_modules=["q_proj", "v_proj"],
|
|
lora_alpha=16,
|
|
lora_dropout=0.05,
|
|
):
|
|
super().__init__()
|
|
|
|
self.llama_model, self.llama_tokenizer = self.init_llm(
|
|
llama_model_path=llama_model,
|
|
low_resource=low_resource,
|
|
low_res_device=device_8bit,
|
|
lora_r=lora_r,
|
|
lora_target_modules=lora_target_modules,
|
|
lora_alpha=lora_alpha,
|
|
lora_dropout=lora_dropout,
|
|
)
|
|
|
|
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
|
|
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision, freeze_vit
|
|
)
|
|
|
|
self.max_txt_len = max_txt_len
|
|
self.max_context_len = max_context_len
|
|
self.end_sym = end_sym
|
|
|
|
self.prompt_template = prompt_template
|
|
self.prompt_list = []
|
|
|
|
def vit_to_cpu(self):
|
|
self.ln_vision.to("cpu")
|
|
self.ln_vision.float()
|
|
self.visual_encoder.to("cpu")
|
|
self.visual_encoder.float()
|
|
|
|
def get_context_emb(self, prompt, img_list):
|
|
device = img_list[0].device
|
|
prompt_segs = prompt.split('<ImageHere>')
|
|
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
|
|
seg_tokens = [
|
|
self.llama_tokenizer(
|
|
seg, return_tensors="pt", add_special_tokens=i==0).to(device).input_ids # only add bos to the first seg
|
|
for i, seg in enumerate(prompt_segs)
|
|
]
|
|
seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens]
|
|
|
|
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
|
|
mixed_embs = torch.cat(mixed_embs, dim=1)
|
|
return mixed_embs
|
|
|
|
def prompt_wrap(self, img_embeds, atts_img, prompts, lengths=None):
|
|
if prompts is None or len(prompts) == 0:
|
|
# prompts is not provided, just return the original image embedding
|
|
return img_embeds, atts_img
|
|
elif img_embeds is None:
|
|
# prompt is provided but there is no image embedding. return the prompt embedding in right padding
|
|
self.llama_tokenizer.padding_side = "right"
|
|
prompt_tokens = self.llama_tokenizer(
|
|
prompts,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
add_special_tokens=False
|
|
).to(self.device)
|
|
prompt_embeds = self.embed_tokens(prompt_tokens.input_ids)
|
|
atts_prompt = prompt_tokens.attention_mask
|
|
return prompt_embeds, atts_prompt
|
|
else:
|
|
# return the multi-modal embedding in right padding
|
|
emb_lists = []
|
|
if isinstance(prompts, str):
|
|
prompts = [prompts] * len(img_embeds)
|
|
|
|
for idx, (each_img_embed, each_prompt) in enumerate(zip(img_embeds, prompts)):
|
|
pn = each_img_embed.shape[-2]
|
|
if lengths is not None:
|
|
each_img_embed = each_img_embed.reshape(-1, each_img_embed.shape[-1])
|
|
each_img_embed = each_img_embed[:lengths[idx] * pn]
|
|
p_segs = each_prompt.split('<ImageHere>')
|
|
interleave_emb = []
|
|
for idx, seg in enumerate(p_segs[:-1]):
|
|
p_tokens = self.llama_tokenizer(
|
|
seg, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
|
|
p_embed = self.embed_tokens(p_tokens.input_ids)
|
|
interleave_emb.append(torch.cat([p_embed, each_img_embed[None][:, idx * pn:(idx + 1) * pn]], dim=1))
|
|
wrapped_emb = torch.cat(interleave_emb, dim=1)
|
|
p_tokens = self.llama_tokenizer(
|
|
p_segs[-1], return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
|
|
p_embed = self.embed_tokens(p_tokens.input_ids)
|
|
wrapped_emb = torch.cat([wrapped_emb, p_embed], dim=1)
|
|
emb_lists.append(wrapped_emb)
|
|
|
|
emb_lens = [emb.shape[1] for emb in emb_lists]
|
|
pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device))
|
|
|
|
max_length = max(emb_lens) if max(emb_lens) < self.max_context_len else self.max_context_len
|
|
wrapped_embs = pad_emb.expand(len(emb_lens), max_length, -1).clone()
|
|
wrapped_atts = torch.zeros([len(emb_lens), max_length], dtype=torch.int, device=img_embeds.device)
|
|
|
|
for i, emb in enumerate(emb_lists):
|
|
length = emb_lens[i] if emb_lens[i] < self.max_context_len else self.max_context_len
|
|
wrapped_embs[i, :length] = emb[:, :length]
|
|
wrapped_atts[i, :length] = 1
|
|
return wrapped_embs, wrapped_atts
|
|
|
|
def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts):
|
|
"""
|
|
Concatenate the batched input embedding and batched output embedding together.
|
|
Both the input and the output embedding should be right padded.
|
|
"""
|
|
input_lens = []
|
|
cat_embs = []
|
|
cat_atts = []
|
|
for i in range(input_embs.size(0)):
|
|
input_len = input_atts[i].sum()
|
|
input_lens.append(input_len)
|
|
cat_embs.append(
|
|
torch.cat([
|
|
input_embs[i][:input_len],
|
|
output_embs[i],
|
|
input_embs[i][input_len:]
|
|
])
|
|
)
|
|
cat_atts.append(
|
|
torch.cat([
|
|
input_atts[i][:input_len],
|
|
output_atts[i],
|
|
input_atts[i][input_len:]
|
|
])
|
|
)
|
|
cat_embs = torch.stack(cat_embs)
|
|
cat_atts = torch.stack(cat_atts)
|
|
return cat_embs, cat_atts, input_lens
|
|
|
|
def tokenize_conversation(self, conv_q, conv_a):
|
|
"""concatenate conversation and make sure the model is only trained to regress the answer"""
|
|
|
|
to_regress_token_ids_list = []
|
|
targets_list = []
|
|
|
|
batch_size = len(conv_q)
|
|
for batch_idx in range(batch_size):
|
|
questions, answers = conv_q[batch_idx], conv_a[batch_idx]
|
|
questions = [self.llama_tokenizer(self.llama_tokenizer.bos_token + q,
|
|
return_tensors="pt",
|
|
add_special_tokens=False).to(self.device) for q in questions[1:]] # the first question is handled in the prompt wrap function, skip it
|
|
answers = [self.llama_tokenizer(a + self.end_sym,
|
|
return_tensors="pt",
|
|
add_special_tokens=False).to(self.device) for a in answers]
|
|
cur_id = []
|
|
cur_target = []
|
|
for i in range(len(questions)):
|
|
cur_id.append(answers[i].input_ids)
|
|
cur_target.append(answers[i].input_ids)
|
|
cur_id.append(questions[i].input_ids)
|
|
cur_target.append(torch.ones_like(questions[i].input_ids) * -100)
|
|
|
|
cur_id.append(answers[-1].input_ids)
|
|
cur_target.append(answers[-1].input_ids)
|
|
|
|
cur_id = torch.cat(cur_id, dim=1)
|
|
cur_target = torch.cat(cur_target, dim=1)
|
|
to_regress_token_ids_list.append(cur_id)
|
|
targets_list.append(cur_target)
|
|
|
|
max_len = min(max([target.shape[1] for target in targets_list]), self.max_txt_len)
|
|
to_regress_token_ids = torch.ones([batch_size, max_len],
|
|
dtype=cur_id.dtype, device=self.device) * self.llama_tokenizer.pad_token_id
|
|
targets = torch.ones([batch_size, max_len],
|
|
dtype=cur_id.dtype, device=self.device) * -100
|
|
for batch_idx in range(batch_size):
|
|
cur_len = to_regress_token_ids_list[batch_idx].shape[1]
|
|
to_regress_token_ids[batch_idx, :cur_len] = to_regress_token_ids_list[batch_idx][0, :max_len]
|
|
targets[batch_idx, :cur_len] = targets_list[batch_idx][0, :max_len]
|
|
|
|
to_regress_token_attn = (to_regress_token_ids != self.llama_tokenizer.pad_token_id).to(torch.int)
|
|
|
|
return to_regress_token_ids, to_regress_token_attn, targets
|
|
|
|
def preparing_embedding(self, samples):
|
|
### prepare input tokens
|
|
if 'image' in samples:
|
|
img_embeds, img_atts = self.encode_img(samples["image"])
|
|
else:
|
|
img_embeds = img_atts = None
|
|
|
|
if 'conv_q' in samples:
|
|
# handeling conversation datasets
|
|
conv_q, conv_a = samples['conv_q'], samples['conv_a']
|
|
|
|
connect_sym = samples['connect_sym'][0]
|
|
conv_q = [q.split(connect_sym)for q in conv_q]
|
|
conv_a = [a.split(connect_sym) for a in conv_a]
|
|
|
|
conv_q = [[self.prompt_template.format(item) for item in items] for items in conv_q]
|
|
|
|
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, [q[0] for q in conv_q])
|
|
regress_token_ids, regress_atts, part_targets = self.tokenize_conversation(conv_q, conv_a)
|
|
|
|
else:
|
|
if "instruction_input" in samples:
|
|
instruction = samples["instruction_input"]
|
|
elif self.prompt_list:
|
|
instruction = random.choice(self.prompt_list)
|
|
else:
|
|
instruction = None
|
|
|
|
if hasattr(self, 'chat_template') and self.chat_template:
|
|
instruction = [self.prompt_template.format(instruct) for instruct in instruction]
|
|
|
|
if 'length' in samples:
|
|
# the input is a image train (like videos)
|
|
bsz, pn, hs = img_embeds.shape
|
|
img_embeds = img_embeds.reshape(len(samples['image']), -1, pn, hs)
|
|
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction, samples['length'])
|
|
else:
|
|
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction)
|
|
|
|
### prepare target tokens
|
|
self.llama_tokenizer.padding_side = "right"
|
|
text = [t + self.end_sym for t in samples["answer"]]
|
|
|
|
regress_tokens = self.llama_tokenizer(
|
|
text,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
truncation=True,
|
|
max_length=self.max_txt_len,
|
|
add_special_tokens=False
|
|
).to(self.device)
|
|
|
|
regress_token_ids = regress_tokens.input_ids
|
|
regress_atts = regress_tokens.attention_mask
|
|
part_targets = regress_token_ids.masked_fill(
|
|
regress_token_ids == self.llama_tokenizer.pad_token_id, -100
|
|
)
|
|
|
|
regress_embeds = self.embed_tokens(regress_token_ids)
|
|
|
|
return cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets
|
|
|
|
def forward(self, samples, reduction='mean'):
|
|
# prepare the embedding to condition and the embedding to regress
|
|
cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets = \
|
|
self.preparing_embedding(samples)
|
|
|
|
# concat the embedding to condition and the embedding to regress
|
|
inputs_embeds, attention_mask, input_lens = \
|
|
self.concat_emb_input_output(cond_embeds, cond_atts, regress_embeds, regress_atts)
|
|
|
|
# get bos token embedding
|
|
bos = torch.ones_like(part_targets[:, :1]) * self.llama_tokenizer.bos_token_id
|
|
bos_embeds = self.embed_tokens(bos)
|
|
bos_atts = cond_atts[:, :1]
|
|
|
|
# add bos token at the begining
|
|
inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1)
|
|
attention_mask = torch.cat([bos_atts, attention_mask], dim=1)
|
|
|
|
# ensemble the final targets
|
|
targets = torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]],
|
|
dtype=torch.long).to(self.device).fill_(-100)
|
|
|
|
for i, target in enumerate(part_targets):
|
|
targets[i, input_lens[i]+1:input_lens[i]+len(target)+1] = target # plus 1 for bos
|
|
|
|
with self.maybe_autocast():
|
|
outputs = self.llama_model(
|
|
inputs_embeds=inputs_embeds,
|
|
attention_mask=attention_mask,
|
|
return_dict=True,
|
|
labels=targets,
|
|
reduction=reduction
|
|
)
|
|
loss = outputs.loss
|
|
|
|
return {"loss": loss}
|
|
|
|
def embed_tokens(self, token_ids):
|
|
if hasattr(self.llama_model.base_model, 'model'): ## lora wrapped model
|
|
embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids)
|
|
else:
|
|
embeds = self.llama_model.base_model.embed_tokens(token_ids)
|
|
return embeds
|
|
|
|
@torch.no_grad()
|
|
def generate(
|
|
self,
|
|
images,
|
|
texts,
|
|
num_beams=1,
|
|
max_new_tokens=20,
|
|
min_length=1,
|
|
top_p=0.9,
|
|
repetition_penalty=1,
|
|
length_penalty=1,
|
|
temperature=1,
|
|
do_sample=False,
|
|
stop_words_ids=[2],
|
|
):
|
|
'''
|
|
function for generate test use
|
|
'''
|
|
|
|
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(
|
|
stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])])
|
|
|
|
img_embeds, atts_img = self.encode_img(images.to(self.device))
|
|
image_lists = [[image_emb[None]] for image_emb in img_embeds]
|
|
|
|
batch_embs = [self.get_context_emb(text, img_list) for text, img_list in zip(texts, image_lists)]
|
|
|
|
batch_size = len(batch_embs)
|
|
max_len = max([emb.shape[1] for emb in batch_embs])
|
|
emb_dim = batch_embs[0].shape[2]
|
|
dtype = batch_embs[0].dtype
|
|
device = batch_embs[0].device
|
|
|
|
embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device)
|
|
attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device)
|
|
for i, emb in enumerate(batch_embs):
|
|
emb_len = emb.shape[1]
|
|
embs[i, -emb_len:] = emb[0]
|
|
attn_mask[i, -emb_len:] = 1
|
|
|
|
with self.maybe_autocast():
|
|
outputs = self.llama_model.generate(
|
|
inputs_embeds=embs,
|
|
attention_mask=attn_mask,
|
|
max_new_tokens=max_new_tokens,
|
|
num_beams=num_beams,
|
|
length_penalty=length_penalty,
|
|
temperature=temperature,
|
|
do_sample=do_sample,
|
|
min_length=min_length,
|
|
top_p=top_p,
|
|
repetition_penalty=repetition_penalty,
|
|
stopping_criteria=stopping_criteria,
|
|
)
|
|
|
|
answers = []
|
|
for output_token in outputs:
|
|
if output_token[0] == 0:
|
|
output_token = output_token[1:]
|
|
output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True)
|
|
output_texts = output_texts.split('</s>')[0] # remove the stop sign </s>
|
|
output_texts = output_texts.replace("<s>", "")
|
|
output_texts = output_texts.split(r'[/INST]')[-1].strip()
|
|
answers.append(output_texts)
|
|
|
|
return answers
|
|
|
|
@torch.no_grad()
|
|
def multi_select(self, images, texts, answers, num_cand=None):
|
|
all_losses = []
|
|
for answer in answers:
|
|
choice_samples = {
|
|
'image': images,
|
|
'instruction_input': texts,
|
|
'answer': answer
|
|
}
|
|
loss = self.forward(choice_samples, reduction='none')['loss'].reshape(-1, 1)
|
|
all_losses.append(loss)
|
|
torch.cuda.empty_cache()
|
|
all_losses = torch.cat(all_losses, dim=-1)
|
|
if num_cand is not None:
|
|
for i in range(all_losses.shape[0]):
|
|
all_losses[i, num_cand[i]:] = 9999
|
|
output_class_ranks = torch.argsort(all_losses, dim=-1)
|
|
return output_class_ranks.tolist() |