mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-04 18:10:47 +00:00
196 lines
7.4 KiB
Python
196 lines
7.4 KiB
Python
import logging
|
|
import random
|
|
|
|
import torch
|
|
from torch.cuda.amp import autocast as autocast
|
|
import torch.nn as nn
|
|
|
|
from minigpt4.common.registry import registry
|
|
from minigpt4.models.base_model import disabled_train
|
|
from minigpt4.models.minigpt_base import MiniGPTBase
|
|
from minigpt4.models.Qformer import BertConfig, BertLMHeadModel
|
|
|
|
|
|
@registry.register_model("minigpt4")
|
|
class MiniGPT4(MiniGPTBase):
|
|
"""
|
|
MiniGPT-4 model
|
|
"""
|
|
|
|
PRETRAINED_MODEL_CONFIG_DICT = {
|
|
"pretrain_vicuna0": "configs/models/minigpt4_vicuna0.yaml",
|
|
"pretrain_llama2": "configs/models/minigpt4_llama2.yaml",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
vit_model="eva_clip_g",
|
|
q_former_model="https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth",
|
|
img_size=224,
|
|
drop_path_rate=0,
|
|
use_grad_checkpoint=False,
|
|
vit_precision="fp16",
|
|
freeze_vit=True,
|
|
has_qformer=True,
|
|
freeze_qformer=True,
|
|
num_query_token=32,
|
|
llama_model="",
|
|
prompt_path="",
|
|
prompt_template="",
|
|
max_txt_len=32,
|
|
end_sym='\n',
|
|
low_resource=False, # use 8 bit and put vit in cpu
|
|
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
|
|
):
|
|
super().__init__(
|
|
vit_model=vit_model,
|
|
img_size=img_size,
|
|
drop_path_rate=drop_path_rate,
|
|
use_grad_checkpoint=use_grad_checkpoint,
|
|
vit_precision=vit_precision,
|
|
freeze_vit=freeze_vit,
|
|
llama_model=llama_model,
|
|
max_txt_len=max_txt_len,
|
|
end_sym=end_sym,
|
|
low_resource=low_resource,
|
|
device_8bit=device_8bit,
|
|
)
|
|
|
|
self.has_qformer = has_qformer
|
|
if self.has_qformer:
|
|
print('Loading Q-Former')
|
|
self.Qformer, self.query_tokens = self.init_Qformer(
|
|
num_query_token, self.visual_encoder.num_features, freeze_qformer
|
|
)
|
|
self.load_from_pretrained(url_or_filename=q_former_model) # load q-former weights here
|
|
|
|
img_f_dim = self.Qformer.config.hidden_size
|
|
print('Loading Q-Former Done')
|
|
else:
|
|
img_f_dim = self.visual_encoder.num_features * 4
|
|
print('Do not use Q-Former here.')
|
|
|
|
self.llama_proj = nn.Linear(
|
|
img_f_dim, self.llama_model.config.hidden_size
|
|
)
|
|
|
|
if prompt_path:
|
|
with open(prompt_path, 'r') as f:
|
|
raw_prompts = f.read().splitlines()
|
|
filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<ImageHere>" in raw_prompt]
|
|
self.prompt_list = [prompt_template.format(p) for p in filted_prompts]
|
|
print('Load {} training prompts'.format(len(self.prompt_list)))
|
|
print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
|
|
else:
|
|
self.prompt_list = []
|
|
|
|
@classmethod
|
|
def init_Qformer(cls, num_query_token, vision_width, freeze):
|
|
encoder_config = BertConfig.from_pretrained("bert-base-uncased")
|
|
encoder_config.encoder_width = vision_width
|
|
# insert cross-attention layer every other block
|
|
encoder_config.add_cross_attention = True
|
|
encoder_config.cross_attention_freq = 2
|
|
encoder_config.query_length = num_query_token
|
|
Qformer = BertLMHeadModel(config=encoder_config)
|
|
query_tokens = nn.Parameter(
|
|
torch.zeros(1, num_query_token, encoder_config.hidden_size)
|
|
)
|
|
query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
|
|
|
|
Qformer.cls = None
|
|
Qformer.bert.embeddings.word_embeddings = None
|
|
Qformer.bert.embeddings.position_embeddings = None
|
|
for layer in Qformer.bert.encoder.layer:
|
|
layer.output = None
|
|
layer.intermediate = None
|
|
|
|
if freeze:
|
|
for name, param in Qformer.named_parameters():
|
|
param.requires_grad = False
|
|
Qformer = Qformer.eval()
|
|
Qformer.train = disabled_train
|
|
query_tokens.requires_grad = False
|
|
logging.info("freeze Qformer")
|
|
|
|
return Qformer, query_tokens
|
|
|
|
def encode_img(self, image):
|
|
device = image.device
|
|
|
|
if len(image.shape) > 4:
|
|
image = image.reshape(-1, *image.shape[-3:])
|
|
|
|
with self.maybe_autocast():
|
|
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
|
|
if self.has_qformer:
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
|
|
|
|
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
|
query_output = self.Qformer.bert(
|
|
query_embeds=query_tokens,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
inputs_llama = self.llama_proj(query_output.last_hidden_state)
|
|
else:
|
|
image_embeds = image_embeds[:, 1:, :]
|
|
bs, pn, hs = image_embeds.shape
|
|
image_embeds = image_embeds.view(bs, int(pn / 4), int(hs * 4))
|
|
|
|
inputs_llama = self.llama_proj(image_embeds)
|
|
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
|
|
return inputs_llama, atts_llama
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg):
|
|
vit_model = cfg.get("vit_model", "eva_clip_g")
|
|
q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth")
|
|
img_size = cfg.get("image_size")
|
|
num_query_token = cfg.get("num_query_token")
|
|
llama_model = cfg.get("llama_model")
|
|
|
|
drop_path_rate = cfg.get("drop_path_rate", 0)
|
|
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
|
|
vit_precision = cfg.get("vit_precision", "fp16")
|
|
freeze_vit = cfg.get("freeze_vit", True)
|
|
has_qformer = cfg.get("has_qformer", True)
|
|
freeze_qformer = cfg.get("freeze_qformer", True)
|
|
low_resource = cfg.get("low_resource", False)
|
|
device_8bit = cfg.get("device_8bit", 0)
|
|
|
|
prompt_path = cfg.get("prompt_path", "")
|
|
prompt_template = cfg.get("prompt_template", "")
|
|
max_txt_len = cfg.get("max_txt_len", 32)
|
|
end_sym = cfg.get("end_sym", '\n')
|
|
|
|
model = cls(
|
|
vit_model=vit_model,
|
|
q_former_model=q_former_model,
|
|
img_size=img_size,
|
|
drop_path_rate=drop_path_rate,
|
|
use_grad_checkpoint=use_grad_checkpoint,
|
|
vit_precision=vit_precision,
|
|
freeze_vit=freeze_vit,
|
|
has_qformer=has_qformer,
|
|
freeze_qformer=freeze_qformer,
|
|
num_query_token=num_query_token,
|
|
llama_model=llama_model,
|
|
prompt_path=prompt_path,
|
|
prompt_template=prompt_template,
|
|
max_txt_len=max_txt_len,
|
|
end_sym=end_sym,
|
|
low_resource=low_resource,
|
|
device_8bit=device_8bit,
|
|
)
|
|
|
|
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
|
|
if ckpt_path:
|
|
print("Load MiniGPT-4 Checkpoint: {}".format(ckpt_path))
|
|
ckpt = torch.load(ckpt_path, map_location="cpu")
|
|
msg = model.load_state_dict(ckpt['model'], strict=False)
|
|
|
|
return model
|