mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-05 18:40:46 +00:00
140 lines
4.8 KiB
Python
140 lines
4.8 KiB
Python
import logging
|
|
import random
|
|
|
|
import torch
|
|
from torch.cuda.amp import autocast as autocast
|
|
import torch.nn as nn
|
|
|
|
from minigpt4.common.registry import registry
|
|
from minigpt4.models.base_model import disabled_train
|
|
from minigpt4.models.minigpt_base import MiniGPTBase
|
|
from minigpt4.models.Qformer import BertConfig, BertLMHeadModel
|
|
|
|
|
|
@registry.register_model("minigpt_v2")
|
|
class MiniGPTv2(MiniGPTBase):
|
|
"""
|
|
MiniGPT-v2 model
|
|
"""
|
|
|
|
PRETRAINED_MODEL_CONFIG_DICT = {
|
|
"pretrain": "configs/models/minigpt_v2.yaml",
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
vit_model="eva_clip_g",
|
|
img_size=448,
|
|
drop_path_rate=0,
|
|
use_grad_checkpoint=False,
|
|
vit_precision="fp16",
|
|
freeze_vit=True,
|
|
llama_model="",
|
|
prompt_template='[INST] {} [/INST]',
|
|
max_txt_len=300,
|
|
end_sym='\n',
|
|
lora_r=64,
|
|
lora_target_modules=["q_proj", "v_proj"],
|
|
lora_alpha=16,
|
|
lora_dropout=0.05,
|
|
chat_template=False,
|
|
use_grad_checkpoint_llm=False,
|
|
max_context_len=3800,
|
|
low_resource=False, # use 8 bit and put vit in cpu
|
|
device_8bit=0, # the device of 8bit model should be set when loading and cannot be changed anymore.
|
|
):
|
|
super().__init__(
|
|
vit_model=vit_model,
|
|
img_size=img_size,
|
|
drop_path_rate=drop_path_rate,
|
|
use_grad_checkpoint=use_grad_checkpoint,
|
|
vit_precision=vit_precision,
|
|
freeze_vit=freeze_vit,
|
|
llama_model=llama_model,
|
|
max_txt_len=max_txt_len,
|
|
max_context_len=max_context_len,
|
|
end_sym=end_sym,
|
|
prompt_template=prompt_template,
|
|
low_resource=low_resource,
|
|
device_8bit=device_8bit,
|
|
lora_r=lora_r,
|
|
lora_target_modules=lora_target_modules,
|
|
lora_alpha=lora_alpha,
|
|
lora_dropout=lora_dropout,
|
|
)
|
|
|
|
img_f_dim = self.visual_encoder.num_features * 4
|
|
self.llama_proj = nn.Linear(
|
|
img_f_dim, self.llama_model.config.hidden_size
|
|
)
|
|
self.chat_template = chat_template
|
|
|
|
if use_grad_checkpoint_llm:
|
|
self.llama_model.gradient_checkpointing_enable()
|
|
|
|
def encode_img(self, image):
|
|
device = image.device
|
|
|
|
if len(image.shape) > 4:
|
|
image = image.reshape(-1, *image.shape[-3:])
|
|
|
|
with self.maybe_autocast():
|
|
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device)
|
|
image_embeds = image_embeds[:, 1:, :]
|
|
bs, pn, hs = image_embeds.shape
|
|
image_embeds = image_embeds.view(bs, int(pn / 4), int(hs * 4))
|
|
|
|
inputs_llama = self.llama_proj(image_embeds)
|
|
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
|
|
return inputs_llama, atts_llama
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg):
|
|
vit_model = cfg.get("vit_model", "eva_clip_g")
|
|
img_size = cfg.get("image_size")
|
|
llama_model = cfg.get("llama_model")
|
|
|
|
drop_path_rate = cfg.get("drop_path_rate", 0)
|
|
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
|
|
vit_precision = cfg.get("vit_precision", "fp16")
|
|
freeze_vit = cfg.get("freeze_vit", True)
|
|
low_resource = cfg.get("low_resource", False)
|
|
|
|
prompt_template = cfg.get("prompt_template", '[INST] {} [/INST]')
|
|
max_txt_len = cfg.get("max_txt_len", 300)
|
|
end_sym = cfg.get("end_sym", '\n')
|
|
|
|
lora_r = cfg.get("lora_r", 64)
|
|
lora_alpha = cfg.get("lora_alpha", 16)
|
|
chat_template = cfg.get("chat_template", False)
|
|
|
|
use_grad_checkpoint_llm = cfg.get("use_grad_checkpoint_llm", False)
|
|
max_context_len = cfg.get("max_context_len", 3800)
|
|
|
|
model = cls(
|
|
vit_model=vit_model,
|
|
img_size=img_size,
|
|
drop_path_rate=drop_path_rate,
|
|
use_grad_checkpoint=use_grad_checkpoint,
|
|
vit_precision=vit_precision,
|
|
freeze_vit=freeze_vit,
|
|
llama_model=llama_model,
|
|
prompt_template=prompt_template,
|
|
max_txt_len=max_txt_len,
|
|
low_resource=low_resource,
|
|
end_sym=end_sym,
|
|
lora_r=lora_r,
|
|
lora_alpha=lora_alpha,
|
|
chat_template=chat_template,
|
|
use_grad_checkpoint_llm=use_grad_checkpoint_llm,
|
|
max_context_len=max_context_len,
|
|
)
|
|
|
|
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
|
|
if ckpt_path:
|
|
print("Load Minigpt-4-LLM Checkpoint: {}".format(ckpt_path))
|
|
ckpt = torch.load(ckpt_path, map_location="cpu")
|
|
msg = model.load_state_dict(ckpt['model'], strict=False)
|
|
|
|
return model
|