MiniGPT-4/minigpt4/datasets/datasets/coco_vqa_datasets.py
2023-10-22 21:37:45 +03:00

185 lines
6.3 KiB
Python
Executable File

"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import os
import json
import random
from PIL import Image
from minigpt4.datasets.datasets.vqa_datasets import VQADataset, VQAEvalDataset
from collections import OrderedDict
class __DisplMixin:
def displ_item(self, index):
sample, ann = self.__getitem__(index), self.annotation[index]
return OrderedDict(
{
"file": ann["image"],
"question": ann["question"],
"question_id": ann["question_id"],
"answers": "; ".join(ann["answer"]),
"image": sample["image"],
}
)
class COCOVQADataset(VQADataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
self.instruction_pool =[
"[vqa] {}",
"[vqa] Based on the image, respond to this question with a short answer: {}"
]
exist_annotation = []
for ann in self.annotation:
image_path = os.path.join(self.vis_root, ann["image"].split('/')[-1])
if os.path.exists(image_path):
exist_annotation.append(ann)
self.annotation = exist_annotation
def get_data(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"].split('/')[-1])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = self.text_processor(ann["question"])
question_id = ann["question_id"]
answer_weight = {}
for answer in ann["answer"]:
if answer in answer_weight.keys():
answer_weight[answer] += 1 / len(ann["answer"])
else:
answer_weight[answer] = 1 / len(ann["answer"])
answers = list(answer_weight.keys())
weights = list(answer_weight.values())
answer = random.choices(answers, weights=weights, k=1)[0] # random sample an answer according to weights
# if "unk" in answer:
# print("cocovqa", answer)
return {
"image": image,
"question": question,
"question_id": question_id,
"answer": answer,
}
def __getitem__(self, index):
data = self.get_data(index)
instruction = random.choice(self.instruction_pool).format(data['question'])
instruction = "<Img><ImageHere></Img> {} ".format(instruction)
return {
"image": data['image'],
"question_id": data["question_id"],
"instruction_input": instruction,
"answer": self.text_processor(data['answer']),
}
class COCOVQGDataset(COCOVQADataset):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
super().__init__(vis_processor, text_processor, vis_root, ann_paths)
self.instruction_pool = [
'Given the image, generate a question whose answer is: {}',
'Based on the image, provide a question with the answer: {}',
'Given the visual representation, create a question for which the answer is "{}"',
'From the image provided, craft a question that leads to the reply: {}',
'Considering the picture, come up with a question where the answer is: {}',
'Taking the image into account, generate an question that has the answer: {}'
]
def __getitem__(self, index):
data = self.get_data(index)
instruction = random.choice(self.instruction_pool).format(data['answer'])
instruction = "<Img><ImageHere></Img> {}".format(instruction)
return {
"image": data['image'],
"question_id": data["question_id"],
"instruction_input": instruction,
"answer": data['question'],
}
class COCOVQAEvalDataset(VQAEvalDataset, __DisplMixin):
def __init__(self, vis_processor, text_processor, vis_root, ann_paths):
"""
vis_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
"""
self.instruction_pool = [
# '{}',
# 'Question: {}',
# '{} A short answer to the question is',
# 'Q: {} A:',
'Question: {} Short answer:',
# 'Given the image, answer the following question with no more than three words. {}',
# 'Based on the image, respond to this question with a short answer: {}.',
# 'Use the provided image to answer the question: {} Provide your answer as short as possible.',
# 'What is the answer to the following question? "{}"',
# 'The question "{}" can be answered using the image. A short answer is'
]
# print('vis_root', vis_root)
self.vis_root = vis_root
self.annotation = json.load(open(ann_paths[0]))
answer_list_path = ann_paths[1]
if os.path.exists(answer_list_path):
self.answer_list = json.load(open(answer_list_path))
else:
self.answer_list = None
try:
self.coco_fmt_qust_file = ann_paths[2]
self.coco_fmt_anno_file = ann_paths[3]
except IndexError:
self.coco_fmt_qust_file = None
self.coco_fmt_anno_file = None
self.vis_processor = vis_processor
self.text_processor = text_processor
self._add_instance_ids()
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.vis_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.vis_processor(image)
question = self.text_processor(ann["question"])
instruction = random.choice(self.instruction_pool).format(question)
instruction = "<Img><ImageHere></Img> {} ".format(instruction)
return {
"image": image,
'image_path': image_path,
"question": question,
"question_id": ann["question_id"],
"instruction_input": instruction,
"instance_id": ann["instance_id"],
}