mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-05 18:40:46 +00:00
172 lines
6.1 KiB
Python
172 lines
6.1 KiB
Python
import argparse
|
|
import gc
|
|
import glob
|
|
import json
|
|
import os
|
|
import shutil
|
|
import tempfile
|
|
|
|
from huggingface_hub import snapshot_download
|
|
import torch
|
|
from torch import nn
|
|
from tqdm import tqdm
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
|
|
|
print("here")
|
|
GB = 1 << 30
|
|
|
|
|
|
def split_files(model_path, tmp_path, split_size):
|
|
if not os.path.exists(model_path):
|
|
model_path = snapshot_download(repo_id=model_path)
|
|
if not os.path.exists(tmp_path):
|
|
os.makedirs(tmp_path)
|
|
|
|
file_pattern = os.path.join(model_path, "pytorch_model-*.bin")
|
|
files = glob.glob(file_pattern)
|
|
|
|
part = 0
|
|
try:
|
|
for file_path in tqdm(files):
|
|
state_dict = torch.load(file_path)
|
|
new_state_dict = {}
|
|
|
|
current_size = 0
|
|
for name, param in state_dict.items():
|
|
param_size = param.numel() * param.element_size()
|
|
|
|
if current_size + param_size > split_size:
|
|
new_file_name = f"pytorch_model-{part}.bin"
|
|
new_file_path = os.path.join(tmp_path, new_file_name)
|
|
torch.save(new_state_dict, new_file_path)
|
|
current_size = 0
|
|
new_state_dict = None
|
|
gc.collect()
|
|
new_state_dict = {}
|
|
part += 1
|
|
|
|
new_state_dict[name] = param
|
|
current_size += param_size
|
|
|
|
new_file_name = f"pytorch_model-{part}.bin"
|
|
new_file_path = os.path.join(tmp_path, new_file_name)
|
|
torch.save(new_state_dict, new_file_path)
|
|
new_state_dict = None
|
|
gc.collect()
|
|
new_state_dict = {}
|
|
part += 1
|
|
except Exception as e:
|
|
print(f"An error occurred during split_files: {e}")
|
|
shutil.rmtree(tmp_path)
|
|
raise
|
|
|
|
|
|
def apply_delta_low_cpu_mem(base_model_path, target_model_path, delta_path):
|
|
print(f"Loading the delta tokenizer from {delta_path}")
|
|
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False)
|
|
|
|
print(f"Loading the delta config from {delta_path}")
|
|
delta_config = AutoConfig.from_pretrained(delta_path)
|
|
|
|
if os.path.exists(target_model_path):
|
|
shutil.rmtree(target_model_path)
|
|
os.makedirs(target_model_path)
|
|
|
|
split_size = 4 * GB
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_base_path, tempfile.TemporaryDirectory() as tmp_delta_path:
|
|
print(f"Split files for the base model to {tmp_base_path}")
|
|
split_files(base_model_path, tmp_base_path, split_size)
|
|
print(f"Split files for the delta weights to {tmp_delta_path}")
|
|
split_files(delta_path, tmp_delta_path, split_size)
|
|
|
|
base_pattern = os.path.join(tmp_base_path, "pytorch_model-*.bin")
|
|
base_files = glob.glob(base_pattern)
|
|
delta_pattern = os.path.join(tmp_delta_path, "pytorch_model-*.bin")
|
|
delta_files = glob.glob(delta_pattern)
|
|
delta_state_dict = torch.load(delta_files[0])
|
|
|
|
print("Applying the delta")
|
|
weight_map = {}
|
|
total_size = 0
|
|
|
|
for i, base_file in tqdm(enumerate(base_files)):
|
|
state_dict = torch.load(base_file)
|
|
file_name = f"pytorch_model-{i}.bin"
|
|
for name, param in state_dict.items():
|
|
if name not in delta_state_dict:
|
|
for delta_file in delta_files:
|
|
delta_state_dict = torch.load(delta_file)
|
|
gc.collect()
|
|
if name in delta_state_dict:
|
|
break
|
|
|
|
if delta_state_dict[name].size(0)==32001:
|
|
state_dict[name] += delta_state_dict[name][:32000, :]
|
|
else:
|
|
state_dict[name] += delta_state_dict[name]
|
|
|
|
weight_map[name] = file_name
|
|
total_size += param.numel() * param.element_size()
|
|
gc.collect()
|
|
|
|
|
|
|
|
torch.save(state_dict, os.path.join(target_model_path, file_name))
|
|
|
|
with open(
|
|
os.path.join(target_model_path, "pytorch_model.bin.index.json"), "w"
|
|
) as f:
|
|
json.dump(
|
|
{"weight_map": weight_map, "metadata": {"total_size": total_size}}, f
|
|
)
|
|
|
|
print(f"Saving the target model to {target_model_path}")
|
|
delta_tokenizer.save_pretrained(target_model_path)
|
|
delta_config.save_pretrained(target_model_path)
|
|
|
|
|
|
def apply_delta(base_model_path, target_model_path, delta_path):
|
|
print(f"Loading the delta weights from {delta_path}")
|
|
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path, use_fast=False)
|
|
delta = AutoModelForCausalLM.from_pretrained(
|
|
delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True
|
|
)
|
|
|
|
print(f"Loading the base model from {base_model_path}")
|
|
base = AutoModelForCausalLM.from_pretrained(
|
|
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True
|
|
)
|
|
|
|
print("Applying the delta")
|
|
for name, param in tqdm(base.state_dict().items(), desc="Applying delta"):
|
|
assert name in delta.state_dict()
|
|
param.data += delta.state_dict()[name]
|
|
|
|
print(f"Saving the target model to {target_model_path}")
|
|
base.save_pretrained(target_model_path)
|
|
delta_tokenizer.save_pretrained(target_model_path)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--base-model-path", type=str, required=True)
|
|
parser.add_argument("--target-model-path", type=str, required=True)
|
|
parser.add_argument("--delta-path", type=str, required=True)
|
|
parser.add_argument(
|
|
"--low-cpu-mem",
|
|
action="store_true",
|
|
help="Lower the cpu memory usage. This will split large files and use "
|
|
"disk as swap to reduce the memory usage below 10GB.",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
print("base", args.base_model_path)
|
|
print("target", args.target_model_path)
|
|
print("delta", args.delta_path)
|
|
if args.low_cpu_mem:
|
|
apply_delta_low_cpu_mem(
|
|
args.base_model_path, args.target_model_path, args.delta_path
|
|
)
|
|
else:
|
|
apply_delta(args.base_model_path, args.target_model_path, args.delta_path) |