6.2 KiB
Download the COCO captions, RefCOCO, RefCOCO+. RefCOCOg, visual genome, textcaps, LLaVA, gqa, AOK-VQA, OK-VQA, OCR-VQA, filtered Flickr-30k, multi-task conversation, and Unnatural instruction datasets
COCO captions
Visual genome
TextCaps
RefCOCO, RefCOCO+, RefCOCOg
Make sure you have the COCO 2014 images first.
Then, download RefCOCO, RefCOCO+, and RefCOCOg annotation files in the following links.
- https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip
- https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip
- https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip
Unzip these files to the location you like. It should have the structure like the following
Location_you_like
├── refcoco
│ ├── instances.json
│ ├── refs(google).p
│ └── refs(unc).p
├── refcoco+
│ ├── instances.json
│ └── refs(unc).p
└── refcocog
├── instances.json
├── refs(google).p
└── refs(umd).p
Set image_path in all the following dataset configuration files to the COCO 2014 image folder. Similarly, set ann_path in all the following configs to the above folder (Location_you_like) that contains refcoco, refcoco+, and refcocog.
- minigpt4/configs/datasets/coco_bbox/refcoco.yaml
- minigpt4/configs/datasets/coco_bbox/refcocog.yaml
- minigpt4/configs/datasets/coco_bbox/refcocop.yaml
- minigpt4/configs/datasets/coco_bbox/invrefcoco.yaml
- minigpt4/configs/datasets/coco_bbox/invrefcocog.yaml
- minigpt4/configs/datasets/coco_bbox/invrefcocop.yaml
Visual Genome
textcaps
LLaVA
Makesure you have the COCO 2014 images first.
Download Llava annotation files in the following link to the place you like.
- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/conversation_58k.json
- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/detail_23k.json
- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/complex_reasoning_77k.json
Set image_path in all the following dataset configuration files to the COCO 2014 image folder. Similarly, set ann_path to the location of the previous downloaded conversation_58k.json, detail_23k.json, and complex_reasoning_77k.json in conversation.yaml, detail.yaml, and reason.yaml, respectively.
- minigpt4/configs/datasets/llava/conversation.yaml
- minigpt4/configs/datasets/llava/detail.yaml
- minigpt4/configs/datasets/llava/reason.yaml
OKVQA
AOK-VQA
OCR-VQA
- download script, we save all files as
.jpg
filtered Flickr-30k
Multi-task conversation
Unnatural instruction
Pre-training datasets download:
We use the filtered synthetic captions prepared by BLIP. For more details about the dataset, please refer to BLIP.
It requires ~2.3T to store LAION and CC3M+CC12M+SBU datasets
Image source | Filtered synthetic caption by ViT-L |
---|---|
CC3M+CC12M+SBU | Download |
LAION115M | Download |
This will download two json files
ccs_synthetic_filtered_large.json
laion_synthetic_filtered_large.json
prepare the data step-by-step
setup the dataset folder and move the annotation file to the data storage folder
export MINIGPT4_DATASET=/YOUR/PATH/FOR/LARGE/DATASET/
mkdir ${MINIGPT4_DATASET}/cc_sbu
mkdir ${MINIGPT4_DATASET}/laion
mv ccs_synthetic_filtered_large.json ${MINIGPT4_DATASET}/cc_sbu
mv laion_synthetic_filtered_large.json ${MINIGPT4_DATASET}/laion
Convert the scripts to data storate folder
cp convert_cc_sbu.py ${MINIGPT4_DATASET}/cc_sbu
cp download_cc_sbu.sh ${MINIGPT4_DATASET}/cc_sbu
cp convert_laion.py ${MINIGPT4_DATASET}/laion
cp download_laion.sh ${MINIGPT4_DATASET}/laion
Convert the laion and cc_sbu annotation file format to be img2dataset format
cd ${MINIGPT4_DATASET}/cc_sbu
python convert_cc_sbu.py
cd ${MINIGPT4_DATASET}/laion
python convert_laion.py
Download the datasets with img2dataset
cd ${MINIGPT4_DATASET}/cc_sbu
sh download_cc_sbu.sh
cd ${MINIGPT4_DATASET}/laion
sh download_laion.sh
The final dataset structure
.
├── ${MINIGPT4_DATASET}
│ ├── cc_sbu
│ ├── convert_cc_sbu.py
│ ├── download_cc_sbu.sh
│ ├── ccs_synthetic_filtered_large.json
│ ├── ccs_synthetic_filtered_large.tsv
│ └── cc_sbu_dataset
│ ├── 00000.tar
│ ├── 00000.parquet
│ ...
│ ├── laion
│ ├── convert_laion.py
│ ├── download_laion.sh
│ ├── laion_synthetic_filtered_large.json
│ ├── laion_synthetic_filtered_large.tsv
│ └── laion_dataset
│ ├── 00000.tar
│ ├── 00000.parquet
│ ...
...
Set up the dataset configuration files
Then, set up the LAION dataset loading path in here at Line 5 as ${MINIGPT4_DATASET}/laion/laion_dataset/{00000..10488}.tar
and the Conceptual Captoin and SBU datasets loading path in here at Line 5 as ${MINIGPT4_DATASET}/cc_sbu/cc_sbu_dataset/{00000..01255}.tar