6.4 KiB
Download the COCO captions, RefCOCO, RefCOCO+. RefCOCOg, visual genome, textcaps, LLaVA, gqa, AOK-VQA, OK-VQA, OCR-VQA, filtered Flickr-30k, multi-task conversation, and Unnatural instruction datasets
Download the dataset
Image source | Download path |
---|---|
COCO 2014 images | images captions |
Visual Genome | images part1 images part2 |
TextCaps | images annotations |
RefCOCO | annotations |
RefCOCO+ | annotations |
RefCOCOg | annotations |
LLaVA | Compelex reasoning Detailed description Conversation |
OKVQA | annotations |
AOK-VQA | annotations |
OCR-VQA | annotations |
Filtered Flickr-30k | images: annotations: annotations |
Multi-task conversation | annotations | |
Filtered unnatural instruction | annotations |
. ├── ${MINIGPTv2_DATASET} │ ├── coco_captions │ ├── coco_images | ├── annotations | ├── coco_karpathy_train.json
COCO captions
Download the COCO 2014 images
Visual genome
TextCaps
RefCOCO, RefCOCO+, RefCOCOg
Make sure you have the COCO 2014 images first.
Then, download RefCOCO, RefCOCO+, and RefCOCOg annotation files in the following links.
- https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco.zip
- https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcoco+.zip
- https://bvisionweb1.cs.unc.edu/licheng/referit/data/refcocog.zip
Unzip these files to the location you like. It should have the structure like the following
Location_you_like
├── refcoco
│ ├── instances.json
│ ├── refs(google).p
│ └── refs(unc).p
├── refcoco+
│ ├── instances.json
│ └── refs(unc).p
└── refcocog
├── instances.json
├── refs(google).p
└── refs(umd).p
Set image_path in all the following dataset configuration files to the COCO 2014 image folder. Similarly, set ann_path in all the following configs to the above folder (Location_you_like) that contains refcoco, refcoco+, and refcocog.
- minigpt4/configs/datasets/coco_bbox/refcoco.yaml
- minigpt4/configs/datasets/coco_bbox/refcocog.yaml
- minigpt4/configs/datasets/coco_bbox/refcocop.yaml
- minigpt4/configs/datasets/coco_bbox/invrefcoco.yaml
- minigpt4/configs/datasets/coco_bbox/invrefcocog.yaml
- minigpt4/configs/datasets/coco_bbox/invrefcocop.yaml
LLaVA
Makesure you have the COCO 2014 images first.
Download Llava annotation files in the following link to the place you like.
- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/conversation_58k.json
- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/detail_23k.json
- https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/complex_reasoning_77k.json
Set image_path in all the following dataset configuration files to the COCO 2014 image folder. Similarly, set ann_path to the location of the previous downloaded conversation_58k.json, detail_23k.json, and complex_reasoning_77k.json in conversation.yaml, detail.yaml, and reason.yaml, respectively.
- minigpt4/configs/datasets/llava/conversation.yaml
- minigpt4/configs/datasets/llava/detail.yaml
- minigpt4/configs/datasets/llava/reason.yaml
OKVQA
-
Images are from COCO
AOK-VQA
export AOKVQA_DIR=YOUR_DATASET_PATH
mkdir -p ${AOKVQA_DIR}
curl -fsSL https://prior-datasets.s3.us-east-2.amazonaws.com/aokvqa/aokvqa_v1p0.tar.gz | tar xvz -C ${AOKVQA_DIR}
OCR-VQA
- download script, we save all files as
.jpg