mirror of
https://github.com/Vision-CAIR/MiniGPT-4.git
synced 2025-04-05 10:30:45 +00:00
90 lines
3.6 KiB
Python
90 lines
3.6 KiB
Python
# coding: utf-8
|
|
|
|
import sys
|
|
dataDir = '../../VQA'
|
|
sys.path.insert(0, '%s/PythonHelperTools/vqaTools' %(dataDir))
|
|
from vqa import VQA
|
|
from vqaEvaluation.vqaEval import VQAEval
|
|
import matplotlib.pyplot as plt
|
|
import skimage.io as io
|
|
import json
|
|
import random
|
|
import os
|
|
|
|
# set up file names and paths
|
|
versionType ='v2_' # this should be '' when using VQA v2.0 dataset
|
|
taskType ='OpenEnded' # 'OpenEnded' only for v2.0. 'OpenEnded' or 'MultipleChoice' for v1.0
|
|
dataType ='mscoco' # 'mscoco' only for v1.0. 'mscoco' for real and 'abstract_v002' for abstract for v1.0.
|
|
dataSubType ='train2014'
|
|
annFile ='%s/Annotations/%s%s_%s_annotations.json'%(dataDir, versionType, dataType, dataSubType)
|
|
quesFile ='%s/Questions/%s%s_%s_%s_questions.json'%(dataDir, versionType, taskType, dataType, dataSubType)
|
|
imgDir ='%s/Images/%s/%s/' %(dataDir, dataType, dataSubType)
|
|
resultType ='fake'
|
|
fileTypes = ['results', 'accuracy', 'evalQA', 'evalQuesType', 'evalAnsType']
|
|
|
|
# An example result json file has been provided in './Results' folder.
|
|
|
|
[resFile, accuracyFile, evalQAFile, evalQuesTypeFile, evalAnsTypeFile] = ['%s/Results/%s%s_%s_%s_%s_%s.json'%(dataDir, versionType, taskType, dataType, dataSubType, \
|
|
resultType, fileType) for fileType in fileTypes]
|
|
|
|
# create vqa object and vqaRes object
|
|
vqa = VQA(annFile, quesFile)
|
|
vqaRes = vqa.loadRes(resFile, quesFile)
|
|
|
|
# create vqaEval object by taking vqa and vqaRes
|
|
vqaEval = VQAEval(vqa, vqaRes, n=2) #n is precision of accuracy (number of places after decimal), default is 2
|
|
|
|
# evaluate results
|
|
"""
|
|
If you have a list of question ids on which you would like to evaluate your results, pass it as a list to below function
|
|
By default it uses all the question ids in annotation file
|
|
"""
|
|
vqaEval.evaluate()
|
|
|
|
# print accuracies
|
|
print "\n"
|
|
print "Overall Accuracy is: %.02f\n" %(vqaEval.accuracy['overall'])
|
|
print "Per Question Type Accuracy is the following:"
|
|
for quesType in vqaEval.accuracy['perQuestionType']:
|
|
print "%s : %.02f" %(quesType, vqaEval.accuracy['perQuestionType'][quesType])
|
|
print "\n"
|
|
print "Per Answer Type Accuracy is the following:"
|
|
for ansType in vqaEval.accuracy['perAnswerType']:
|
|
print "%s : %.02f" %(ansType, vqaEval.accuracy['perAnswerType'][ansType])
|
|
print "\n"
|
|
# demo how to use evalQA to retrieve low score result
|
|
evals = [quesId for quesId in vqaEval.evalQA if vqaEval.evalQA[quesId]<35] #35 is per question percentage accuracy
|
|
if len(evals) > 0:
|
|
print 'ground truth answers'
|
|
randomEval = random.choice(evals)
|
|
randomAnn = vqa.loadQA(randomEval)
|
|
vqa.showQA(randomAnn)
|
|
|
|
print '\n'
|
|
print 'generated answer (accuracy %.02f)'%(vqaEval.evalQA[randomEval])
|
|
ann = vqaRes.loadQA(randomEval)[0]
|
|
print "Answer: %s\n" %(ann['answer'])
|
|
|
|
imgId = randomAnn[0]['image_id']
|
|
imgFilename = 'COCO_' + dataSubType + '_'+ str(imgId).zfill(12) + '.jpg'
|
|
if os.path.isfile(imgDir + imgFilename):
|
|
I = io.imread(imgDir + imgFilename)
|
|
plt.imshow(I)
|
|
plt.axis('off')
|
|
plt.show()
|
|
|
|
# plot accuracy for various question types
|
|
plt.bar(range(len(vqaEval.accuracy['perQuestionType'])), vqaEval.accuracy['perQuestionType'].values(), align='center')
|
|
plt.xticks(range(len(vqaEval.accuracy['perQuestionType'])), vqaEval.accuracy['perQuestionType'].keys(), rotation='0',fontsize=10)
|
|
plt.title('Per Question Type Accuracy', fontsize=10)
|
|
plt.xlabel('Question Types', fontsize=10)
|
|
plt.ylabel('Accuracy', fontsize=10)
|
|
plt.show()
|
|
|
|
# save evaluation results to ./Results folder
|
|
json.dump(vqaEval.accuracy, open(accuracyFile, 'w'))
|
|
json.dump(vqaEval.evalQA, open(evalQAFile, 'w'))
|
|
json.dump(vqaEval.evalQuesType, open(evalQuesTypeFile, 'w'))
|
|
json.dump(vqaEval.evalAnsType, open(evalAnsTypeFile, 'w'))
|
|
|