/* SleepLib PRS1 Loader Parser Implementation * * Copyright (c) 2019-2022 The OSCAR Team * Portions copyright (c) 2011-2018 Mark Watkins * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of the source code * for more details. */ #include "prs1_parser.h" #include "prs1_loader.h" #include "rawdata.h" // The qt5.15 obsolescence of hex requires this change. // this solution to QT's obsolescence is only used in debug statements #if QT_VERSION >= QT_VERSION_CHECK(5,15,0) #define QTHEX Qt::hex #define QTDEC Qt::dec #else #define QTHEX hex #define QTDEC dec #endif const PRS1ParsedEventType PRS1TidalVolumeEvent::TYPE; const PRS1ParsedEventType PRS1SnoresAtPressureEvent::TYPE; const PRS1ParsedEventType PRS1TimedBreathEvent::TYPE; const PRS1ParsedEventType PRS1ObstructiveApneaEvent::TYPE; const PRS1ParsedEventType PRS1ClearAirwayEvent::TYPE; const PRS1ParsedEventType PRS1FlowLimitationEvent::TYPE; const PRS1ParsedEventType PRS1PeriodicBreathingEvent::TYPE; const PRS1ParsedEventType PRS1LargeLeakEvent::TYPE; const PRS1ParsedEventType PRS1VariableBreathingEvent::TYPE; const PRS1ParsedEventType PRS1HypopneaEvent::TYPE; const PRS1ParsedEventType PRS1TotalLeakEvent::TYPE; const PRS1ParsedEventType PRS1LeakEvent::TYPE; const PRS1ParsedEventType PRS1AutoPressureSetEvent::TYPE; const PRS1ParsedEventType PRS1PressureSetEvent::TYPE; const PRS1ParsedEventType PRS1IPAPSetEvent::TYPE; const PRS1ParsedEventType PRS1EPAPSetEvent::TYPE; const PRS1ParsedEventType PRS1PressureAverageEvent::TYPE; const PRS1ParsedEventType PRS1FlexPressureAverageEvent::TYPE; const PRS1ParsedEventType PRS1IPAPAverageEvent::TYPE; const PRS1ParsedEventType PRS1IPAPHighEvent::TYPE; const PRS1ParsedEventType PRS1IPAPLowEvent::TYPE; const PRS1ParsedEventType PRS1EPAPAverageEvent::TYPE; const PRS1ParsedEventType PRS1RespiratoryRateEvent::TYPE; const PRS1ParsedEventType PRS1PatientTriggeredBreathsEvent::TYPE; const PRS1ParsedEventType PRS1MinuteVentilationEvent::TYPE; const PRS1ParsedEventType PRS1SnoreEvent::TYPE; const PRS1ParsedEventType PRS1VibratorySnoreEvent::TYPE; const PRS1ParsedEventType PRS1PressurePulseEvent::TYPE; const PRS1ParsedEventType PRS1RERAEvent::TYPE; const PRS1ParsedEventType PRS1FlowRateEvent::TYPE; const PRS1ParsedEventType PRS1Test1Event::TYPE; const PRS1ParsedEventType PRS1Test2Event::TYPE; const PRS1ParsedEventType PRS1HypopneaCount::TYPE; const PRS1ParsedEventType PRS1ClearAirwayCount::TYPE; const PRS1ParsedEventType PRS1ObstructiveApneaCount::TYPE; //const PRS1ParsedEventType PRS1DisconnectAlarmEvent::TYPE; const PRS1ParsedEventType PRS1ApneaAlarmEvent::TYPE; //const PRS1ParsedEventType PRS1LowMinuteVentilationAlarmEvent::TYPE; //******************************************************************************************** // MARK: Render parsed events as text static QString hex(int i) { return QString("0x") + QString::number(i, 16).toUpper(); } #define ENUMSTRING(ENUM) case ENUM: s = QStringLiteral(#ENUM); break QString PRS1ParsedEvent::typeName() const { PRS1ParsedEventType t = m_type; QString s; switch (t) { ENUMSTRING(EV_PRS1_RAW); ENUMSTRING(EV_PRS1_UNKNOWN); ENUMSTRING(EV_PRS1_TB); ENUMSTRING(EV_PRS1_OA); ENUMSTRING(EV_PRS1_CA); ENUMSTRING(EV_PRS1_FL); ENUMSTRING(EV_PRS1_PB); ENUMSTRING(EV_PRS1_LL); ENUMSTRING(EV_PRS1_VB); ENUMSTRING(EV_PRS1_HY); ENUMSTRING(EV_PRS1_OA_COUNT); ENUMSTRING(EV_PRS1_CA_COUNT); ENUMSTRING(EV_PRS1_HY_COUNT); ENUMSTRING(EV_PRS1_TOTLEAK); ENUMSTRING(EV_PRS1_LEAK); ENUMSTRING(EV_PRS1_AUTO_PRESSURE_SET); ENUMSTRING(EV_PRS1_PRESSURE_SET); ENUMSTRING(EV_PRS1_IPAP_SET); ENUMSTRING(EV_PRS1_EPAP_SET); ENUMSTRING(EV_PRS1_PRESSURE_AVG); ENUMSTRING(EV_PRS1_FLEX_PRESSURE_AVG); ENUMSTRING(EV_PRS1_IPAP_AVG); ENUMSTRING(EV_PRS1_IPAPLOW); ENUMSTRING(EV_PRS1_IPAPHIGH); ENUMSTRING(EV_PRS1_EPAP_AVG); ENUMSTRING(EV_PRS1_RR); ENUMSTRING(EV_PRS1_PTB); ENUMSTRING(EV_PRS1_MV); ENUMSTRING(EV_PRS1_TV); ENUMSTRING(EV_PRS1_SNORE); ENUMSTRING(EV_PRS1_VS); ENUMSTRING(EV_PRS1_PP); ENUMSTRING(EV_PRS1_RERA); ENUMSTRING(EV_PRS1_FLOWRATE); ENUMSTRING(EV_PRS1_TEST1); ENUMSTRING(EV_PRS1_TEST2); ENUMSTRING(EV_PRS1_SETTING); ENUMSTRING(EV_PRS1_SLICE); ENUMSTRING(EV_PRS1_DISCONNECT_ALARM); ENUMSTRING(EV_PRS1_APNEA_ALARM); ENUMSTRING(EV_PRS1_LOW_MV_ALARM); ENUMSTRING(EV_PRS1_SNORES_AT_PRESSURE); ENUMSTRING(EV_PRS1_INTERVAL_BOUNDARY); default: s = hex(t); qDebug() << "Unknown PRS1ParsedEventType type:" << qPrintable(s); return s; } return s.mid(8).toLower(); // lop off initial EV_PRS1_ } QString PRS1ParsedSettingEvent::settingName() const { PRS1ParsedSettingType t = m_setting; QString s; switch (t) { ENUMSTRING(PRS1_SETTING_CPAP_MODE); ENUMSTRING(PRS1_SETTING_AUTO_TRIAL); ENUMSTRING(PRS1_SETTING_PRESSURE); ENUMSTRING(PRS1_SETTING_PRESSURE_MIN); ENUMSTRING(PRS1_SETTING_PRESSURE_MAX); ENUMSTRING(PRS1_SETTING_EPAP); ENUMSTRING(PRS1_SETTING_EPAP_MIN); ENUMSTRING(PRS1_SETTING_EPAP_MAX); ENUMSTRING(PRS1_SETTING_IPAP); ENUMSTRING(PRS1_SETTING_IPAP_MIN); ENUMSTRING(PRS1_SETTING_IPAP_MAX); ENUMSTRING(PRS1_SETTING_PS); ENUMSTRING(PRS1_SETTING_PS_MIN); ENUMSTRING(PRS1_SETTING_PS_MAX); ENUMSTRING(PRS1_SETTING_BACKUP_BREATH_MODE); ENUMSTRING(PRS1_SETTING_BACKUP_BREATH_RATE); ENUMSTRING(PRS1_SETTING_BACKUP_TIMED_INSPIRATION); ENUMSTRING(PRS1_SETTING_TIDAL_VOLUME); ENUMSTRING(PRS1_SETTING_EZ_START); ENUMSTRING(PRS1_SETTING_FLEX_LOCK); ENUMSTRING(PRS1_SETTING_FLEX_MODE); ENUMSTRING(PRS1_SETTING_FLEX_LEVEL); ENUMSTRING(PRS1_SETTING_RISE_TIME); ENUMSTRING(PRS1_SETTING_RISE_TIME_LOCK); ENUMSTRING(PRS1_SETTING_RAMP_TYPE); ENUMSTRING(PRS1_SETTING_RAMP_TIME); ENUMSTRING(PRS1_SETTING_RAMP_PRESSURE); ENUMSTRING(PRS1_SETTING_HUMID_STATUS); ENUMSTRING(PRS1_SETTING_HUMID_MODE); ENUMSTRING(PRS1_SETTING_HEATED_TUBE_TEMP); ENUMSTRING(PRS1_SETTING_HUMID_LEVEL); ENUMSTRING(PRS1_SETTING_HUMID_TARGET_TIME); ENUMSTRING(PRS1_SETTING_MASK_RESIST_LOCK); ENUMSTRING(PRS1_SETTING_MASK_RESIST_SETTING); ENUMSTRING(PRS1_SETTING_HOSE_DIAMETER); ENUMSTRING(PRS1_SETTING_TUBING_LOCK); ENUMSTRING(PRS1_SETTING_AUTO_ON); ENUMSTRING(PRS1_SETTING_AUTO_OFF); ENUMSTRING(PRS1_SETTING_APNEA_ALARM); ENUMSTRING(PRS1_SETTING_DISCONNECT_ALARM); ENUMSTRING(PRS1_SETTING_LOW_MV_ALARM); ENUMSTRING(PRS1_SETTING_LOW_TV_ALARM); ENUMSTRING(PRS1_SETTING_MASK_ALERT); ENUMSTRING(PRS1_SETTING_SHOW_AHI); default: s = hex(t); qDebug() << "Unknown PRS1ParsedSettingType type:" << qPrintable(s); return s; } return s.mid(13).toLower(); // lop off initial PRS1_SETTING_ } QString PRS1ParsedSettingEvent::modeName() const { int m = value(); QString s; switch ((PRS1Mode) m) { ENUMSTRING(PRS1_MODE_UNKNOWN); // TODO: Remove this when all the parsers are complete. ENUMSTRING(PRS1_MODE_CPAP); ENUMSTRING(PRS1_MODE_CPAPCHECK); ENUMSTRING(PRS1_MODE_AUTOTRIAL); ENUMSTRING(PRS1_MODE_AUTOCPAP); ENUMSTRING(PRS1_MODE_BILEVEL); ENUMSTRING(PRS1_MODE_AUTOBILEVEL); ENUMSTRING(PRS1_MODE_ASV); ENUMSTRING(PRS1_MODE_S); ENUMSTRING(PRS1_MODE_ST); ENUMSTRING(PRS1_MODE_PC); ENUMSTRING(PRS1_MODE_ST_AVAPS); ENUMSTRING(PRS1_MODE_PC_AVAPS); default: s = hex(m); qDebug() << "Unknown PRS1Mode:" << qPrintable(s); return s; } return s.mid(10).toLower(); // lop off initial PRS1_MODE_ } QString PRS1ParsedEvent::timeStr(int t) { int h = t / 3600; int m = (t - (h * 3600)) / 60; int s = t % 60; #if 1 // Optimized after profiling regression tests. return QString::asprintf("%02d:%02d:%02d", h, m, s); #else // Unoptimized original, slows down regression tests. return QString("%1:%2:%3").arg(h, 2, 10, QChar('0')).arg(m, 2, 10, QChar('0')).arg(s, 2, 10, QChar('0')); #endif } static QString byteList(QByteArray data, int limit=-1) { int count = data.size(); if (limit == -1 || limit > count) limit = count; QStringList l; for (int i = 0; i < limit; i++) { l.push_back(QString( "%1" ).arg((int) data[i] & 0xFF, 2, 16, QChar('0') ).toUpper()); } if (limit < count) l.push_back("..."); QString s = l.join(" "); return s; } QMap PRS1IntervalBoundaryEvent::contents(void) { QMap out; out["start"] = timeStr(m_start); return out; } QMap PRS1ParsedDurationEvent::contents(void) { QMap out; out["start"] = timeStr(m_start); out["duration"] = timeStr(m_duration); return out; } QMap PRS1ParsedValueEvent::contents(void) { QMap out; out["start"] = timeStr(m_start); out["value"] = QString::number(value()); return out; } QMap PRS1UnknownDataEvent::contents(void) { QMap out; out["pos"] = QString::number(m_pos); out["data"] = byteList(m_data); return out; } QMap PRS1ParsedSettingEvent::contents(void) { QMap out; QString v; if (m_setting == PRS1_SETTING_CPAP_MODE) { v = modeName(); } else { v = QString::number(value()); } out[settingName()] = v; return out; } QMap PRS1ParsedSliceEvent::contents(void) { QMap out; out["start"] = timeStr(m_start); QString s; switch ((SliceStatus) m_value) { case MaskOn: s = "MaskOn"; break; case MaskOff: s = "MaskOff"; break; case EquipmentOff: s = "EquipmentOff"; break; case UnknownStatus: s = "Unknown"; break; } out["status"] = s; return out; } QMap PRS1ParsedAlarmEvent::contents(void) { QMap out; out["start"] = timeStr(m_start); return out; } QMap PRS1SnoresAtPressureEvent::contents(void) { QString label; switch (m_kind) { case 0: label = "pressure"; break; case 1: label = "epap"; break; case 2: label = "ipap"; break; default: label = "unknown_pressure"; break; } QMap out; out["start"] = timeStr(m_start); out[label] = QString::number(value()); out["count"] = QString::number(m_count); return out; } //******************************************************************************************** // MARK: - // MARK: Parse chunk contents bool PRS1DataChunk::ParseCompliance(void) { switch (this->family) { case 0: switch (this->familyVersion) { case 2: case 3: return this->ParseComplianceF0V23(); case 4: return this->ParseComplianceF0V4(); case 5: return this->ParseComplianceF0V5(); case 6: return this->ParseComplianceF0V6(); } default: ; } qWarning() << "unexpected compliance family" << this->family << "familyVersion" << this->familyVersion; return false; } bool PRS1DataChunk::ParseSummary() { switch (this->family) { case 0: if (this->familyVersion == 6) { return this->ParseSummaryF0V6(); } else if (this->familyVersion == 4) { return this->ParseSummaryF0V4(); } else { return this->ParseSummaryF0V23(); } case 3: switch (this->familyVersion) { case 0: return this->ParseSummaryF3V03(); case 3: return this->ParseSummaryF3V03(); case 6: return this->ParseSummaryF3V6(); } break; case 5: if (this->familyVersion == 1) { return this->ParseSummaryF5V012(); } else if (this->familyVersion == 0) { return this->ParseSummaryF5V012(); } else if (this->familyVersion == 2) { return this->ParseSummaryF5V012(); } else if (this->familyVersion == 3) { return this->ParseSummaryF5V3(); } default: ; } qWarning() << "unexpected family" << this->family << "familyVersion" << this->familyVersion; return false; } // TODO: The nested switch statement below just begs for per-version subclasses. bool PRS1DataChunk::ParseEvents() { bool ok = false; switch (this->family) { case 0: switch (this->familyVersion) { case 2: ok = this->ParseEventsF0V23(); break; case 3: ok = this->ParseEventsF0V23(); break; case 4: ok = this->ParseEventsF0V4(); break; case 6: ok = this->ParseEventsF0V6(); break; } break; case 3: switch (this->familyVersion) { case 0: ok = this->ParseEventsF3V03(); break; case 3: ok = this->ParseEventsF3V03(); break; case 6: ok = this->ParseEventsF3V6(); break; } break; case 5: switch (this->familyVersion) { case 0: ok = this->ParseEventsF5V0(); break; case 1: ok = this->ParseEventsF5V1(); break; case 2: ok = this->ParseEventsF5V2(); break; case 3: ok = this->ParseEventsF5V3(); break; } break; default: qDebug() << "Unknown PRS1 family" << this->family << "familyVersion" << this->familyVersion; } return ok; } // TODO: This really should be in some kind of class hierarchy, once we figure out // the right one. const QVector & GetSupportedEvents(const PRS1DataChunk* chunk) { static const QVector none; switch (chunk->family) { case 0: switch (chunk->familyVersion) { case 2: return ParsedEventsF0V23; break; case 3: return ParsedEventsF0V23; break; case 4: return ParsedEventsF0V4; break; case 6: return ParsedEventsF0V6; break; } break; case 3: switch (chunk->familyVersion) { case 0: return ParsedEventsF3V0; break; case 3: return ParsedEventsF3V3; break; case 6: return ParsedEventsF3V6; break; } break; case 5: switch (chunk->familyVersion) { case 0: return ParsedEventsF5V0; break; case 1: return ParsedEventsF5V1; break; case 2: return ParsedEventsF5V2; break; case 3: return ParsedEventsF5V3; break; } break; } qWarning() << "Missing supported event list for family" << chunk->family << "version" << chunk->familyVersion; return none; } QString PRS1DataChunk::DumpEvent(int t, int code, const unsigned char* data, int size) { int s = t; int h = s / 3600; s -= h * 3600; int m = s / 60; s -= m * 60; QString dump = QString("%1:%2:%3 ") .arg(h, 2, 10, QChar('0')) .arg(m, 2, 10, QChar('0')) .arg(s, 2, 10, QChar('0')); dump = dump + " " + hex(code) + ":"; for (int i = 0; i < size; i++) { dump = dump + QString(" %1").arg(data[i]); } return dump; } void PRS1DataChunk::AddEvent(PRS1ParsedEvent* const event) { m_parsedData.push_back(event); } //******************************************************************************************** // MARK: - // MARK: Parse settings shared by multiple families // Humid F0V2 confirmed // 0x00 = Off (presumably no humidifier present) // 0x80 = Off // 0x81 = 1 // 0x82 = 2 // 0x83 = 3 // 0x84 = 4 // 0x85 = 5 // Humid F3V0 confirmed // 0x03 = 3 (but no humidification shown on hours of usage chart) // 0x04 = 4 (but no humidification shown on hours of usage chart) // 0x80 = Off // 0x81 = 1 // 0x82 = 2 // 0x83 = 3 // 0x84 = 4 // 0x85 = 5 // Humid F5V0 confirmed // 0x00 = Off (presumably no humidifier present) // 0x80 = Off // 0x81 = 1, bypass = no // 0x82 = 2, bypass = no // 0x83 = 3, bypass = no // 0x84 = 4, bypass = no // 0x85 = 5, bypass = no // 0xA0 = Off, bypass = yes void PRS1DataChunk::ParseHumidifierSetting50Series(int humid, bool add_setting) { if (humid & (0x40 | 0x10 | 0x08)) UNEXPECTED_VALUE(humid, "known bits"); if (humid & 0x20) { if (this->family == 5) { CHECK_VALUE(humid, 0xA0); // only example of bypass set, unsure whether it can appear otherwise } else { CHECK_VALUE(humid & 0x20, 0); // only ever seen on 950P, where "Bypass System One humidification" is "Yes" } } bool humidifier_present = ((humid & 0x80) != 0); // humidifier connected int humidlevel = humid & 7; // humidification level HumidMode humidmode = HUMID_Fixed; // 50-Series didn't have adaptive or heated tube humidification if (add_setting) { this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HUMID_STATUS, humidifier_present)); if (humidifier_present) { this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HUMID_MODE, humidmode)); this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HUMID_LEVEL, humidlevel)); } } // Check for truly unexpected values: if (humidlevel > 5) UNEXPECTED_VALUE(humidlevel, "<= 5"); //if (!humidifier_present) CHECK_VALUES(humidlevel, 0, 1); // Some devices appear to encode the humidlevel setting even when the humidifier is not present. } // F0V4 confirmed: // B3 0A = HT=5, H=3, HT // A3 0A = HT=5, H=2, HT // 33 0A = HT=4, H=3, HT // 23 4A = HT=4, H=2, HT // B3 09 = HT=3, H=3, HT // A4 09 = HT=3, H=2, HT // A3 49 = HT=3, H=2, HT // 22 09 = HT=2, H=2, HT // 33 09 = HT=2, H=3, HT // 21 09 = HT=2, H=2, HT // 13 09 = HT=2, H=1, HT // B5 08 = HT=1, H=3, HT // 03 08 = HT=off, HT; data=tube t=0,h=0 // 05 24 = H=5, S1 // 95 06 = H=5, S1 // 95 05 = H=5, S1 // 94 05 = H=4, S1 // 04 24 = H=4, S1 // A3 05 = H=3, S1 // 92 05 = H=2, S1 // A2 05 = H=2, S1 // 01 24 = H=1, S1 // 90 05 = H=off, S1 // 30 05 = H=off, S1 // 95 41 = H=5, Classic // A4 61 = H=4, Classic // A3 61 = H=3, Classic // A2 61 = H=2, Classic // A1 61 = H=1, Classic // 90 41 = H=Off, Classic; data=classic h=0 // 94 11 = H=3, S1, no data [note that bits encode H=4, so no data falls back to H=3] // 93 11 = H=3, S1, no data // 04 30 = H=3, S1, no data // F0V5 confirmed: // 00 60 = H=Off, Classic // 02 60 = H=2, Classic // 05 60 = H=5, Classic // 00 70 = H=Off, no data in chart // F5V1 confirmed: // A0 4A = HT=5, H=2, HT // B1 09 = HT=3, H=3, HT // 91 09 = HT=3, H=1, HT // 32 09 = HT=2, H=3, HT // B2 08 = HT=1, H=3, HT // 00 48 = HT=off, data=tube t=0,h=0 // 95 05 = H=5, S1 // 94 05 = H=4, S1 // 93 05 = H=3, S1 // 92 05 = H=2, S1 // 91 05 = H=1, S1 // 90 05 = H=Off, S1 // 95 41 = H=5, Classic // 94 41 = H=4, Classic // 93 41 = H=3, Classic // 92 41 = H=2, Classic // 01 60 = H=1, Classic // 00 60 = H=Off, Classic // 00 70 = H=3, S1, no data [no data ignores Classic mode, H bits, falls back to S1 H=3] // F5V2 confirmed: // 00 48 = HT=off, data=tube t=0,h=0 // 93 09 = HT=3, H=1, HT // 00 10 = H=3, S1, no data // XX XX = 60-Series Humidifier bytes // 7 = humidity level without tube [on tube disconnect / system one with 22mm hose / classic] : 0 = humidifier off // 8 = [never seen] // 3 = humidity level with tube // 4 = maybe part of humidity level? [never seen] // 8 3 = tube temperature (high bit of humid 1 is low bit of temp) // 4 = "System One" mode (valid even when humidifier is off) // 8 = heated tube present // 10 = no data in chart, maybe no humidifier attached? Seems to fall back on System One = 3 despite other (humidity level and S1) bits. // 20 = unknown, something tube related since whenever it's set tubepresent is false // 40 = "Classic" mode (valid even when humidifier is off, ignored when heated tube is present) // 80 = [never seen] void PRS1DataChunk::ParseHumidifierSetting60Series(unsigned char humid1, unsigned char humid2, bool add_setting) { int humidlevel = humid1 & 7; // Ignored when heated tube is present: humidifier setting on tube disconnect is always reported as 3 if (humidlevel > 5) UNEXPECTED_VALUE(humidlevel, "<= 5"); CHECK_VALUE(humid1 & 8, 0); // never seen int tubehumidlevel = (humid1 >> 4) & 7; // This mask is a best guess based on other masks. if (tubehumidlevel > 5) UNEXPECTED_VALUE(tubehumidlevel, "<= 5"); CHECK_VALUE(tubehumidlevel & 4, 0); // never seen, but would clarify whether above mask is correct int tubetemp = (humid1 >> 7) | ((humid2 & 3) << 1); if (tubetemp > 5) UNEXPECTED_VALUE(tubetemp, "<= 5"); CHECK_VALUE(humid2 & 0x80, 0); // never seen bool humidclassic = (humid2 & 0x40) != 0; // Set on classic mode reports; evidently ignored (sometimes set!) when tube is present //bool no_tube? = (humid2 & 0x20) != 0; // Something tube related: whenever it is set, tube is never present (inverse is not true) bool no_data = (humid2 & 0x10) != 0; // As described in chart, settings still show up int tubepresent = (humid2 & 0x08) != 0; bool humidsystemone = (humid2 & 0x04) != 0; // Set on "System One" humidification mode reports when tubepresent is false if (humidsystemone && tubepresent) { // On a 560P, we've observed a spurious tubepresent bit being set during two sessions. // Those sessions (and the ones that followed) used a 22mm hose. CHECK_VALUE(add_setting, false); // We've only seen this appear during a session, not in the initial settings. tubepresent = false; } // When no_data, reports always say "System One" with humidity level 3, regardless of humidlevel and humidsystemone if (humidsystemone + tubepresent + no_data == 0) CHECK_VALUE(humidclassic, true); // Always set when everything else is off if (no_data && humidsystemone && add_setting == false) { // This has been seen once on a 560P in a session that also generated a file in the error directory. qWarning() << this->sessionid << "Humidification error during session?"; } else { if (humidsystemone + tubepresent + no_data > 1) UNEXPECTED_VALUE(humid2, "one bit set"); // Only one of these ever seems to be set at a time } if (tubepresent && tubetemp == 0) CHECK_VALUE(tubehumidlevel, 0); // When the heated tube is off, tube humidity seems to be 0 if (tubepresent) humidclassic = false; // Classic mode bit is evidently ignored when tube is present if (no_data) humidclassic = false; // Classic mode bit is evidently ignored when tube is present //qWarning() << this->sessionid << (humidclassic ? "C" : ".") << (humid2 & 0x20 ? "?" : ".") << (tubepresent ? "T" : ".") << (no_data ? "X" : ".") << (humidsystemone ? "1" : "."); /* if (tubepresent) { if (tubetemp) { qWarning() << this->sessionid << "tube temp" << tubetemp << "tube humidity" << tubehumidlevel << (humidclassic ? "classic" : "systemone") << "humidity" << humidlevel; } else { qWarning() << this->sessionid << "heated tube off" << (humidclassic ? "classic" : "systemone") << "humidity" << humidlevel; } } else { qWarning() << this->sessionid << (humidclassic ? "classic" : "systemone") << "humidity" << humidlevel; } */ HumidMode humidmode = HUMID_Fixed; if (tubepresent) { humidmode = HUMID_HeatedTube; } else { if (humidsystemone + humidclassic > 1) UNEXPECTED_VALUE(humid2, "fixed or adaptive"); if (humidsystemone) humidmode = HUMID_Adaptive; } if (add_setting) { bool humidifier_present = (no_data == 0); this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HUMID_STATUS, humidifier_present)); if (humidifier_present) { this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HUMID_MODE, humidmode)); if (humidmode == HUMID_HeatedTube) { this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HEATED_TUBE_TEMP, tubetemp)); this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HUMID_LEVEL, tubehumidlevel)); } else { this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HUMID_LEVEL, humidlevel)); } } } // Check for previously unseen data that we expect to be normal: if (this->family == 0) { // F0V4 if (tubetemp && (tubehumidlevel < 1 || tubehumidlevel > 3)) UNEXPECTED_VALUE(tubehumidlevel, "1-3"); } else if (this->familyVersion == 1) { // F5V1 if (tubepresent) { // all tube temperatures seen if (tubetemp) { if (tubehumidlevel == 0 || tubehumidlevel > 3) UNEXPECTED_VALUE(tubehumidlevel, "1-3"); } } } else if (this->familyVersion == 2) { // F5V2 if (tubepresent) { // all tube temperatures seen if (tubetemp) { CHECK_VALUES(tubehumidlevel, 1, 3); } } CHECK_VALUE(humidclassic, false); } } // F0V6 confirmed // 90 B0 = HT=3!,H=3!,data=none [no humidifier appears to ignore HT and H bits and show HT=3,H=3 in details] // 8C 6C = HT=3, H=3, data=none // 80 00 = nothing listed in details, data=none, only seen on 400G and 502G // 54 B4 = HT=5, H=5, data=tube // 50 90 = HT=4, H=4, data=tube // 4C 6C = HT=3, H=3, data=tube // 48 68 = HT=3, H=2, data=tube // 40 60 = HT=3, H=Off, data=tube t=3,h=0 // 50 50 = HT=2, H=4, data=tube // 4C 4C = HT=2, H=3, data=tube // 50 30 = HT=1, H=4, data=tube // 4C 0C = HT=off, H=3, data=tube t=0,h=3 // 34 74 = HT=3, H=5, data=adaptive (5) // 50 B0 = HT=5, H=4, adaptive // 30 B0 = HT=3, H=4, data=adaptive (4) // 30 50 = HT=3, H=4, data=adaptive (4) // 30 10 = HT=3!,H=4, data=adaptive (4) [adaptive mode appears to ignore HT bits and show HT=3 in details] // 30 70 = HT=3, H=4, data=adaptive (4) // 2C 6C = HT=3, H=3, data=adaptive (3) // 28 08 = H=2, data=adaptive (2), no details (400G) // 28 48 = HT=3!,H=2, data=adaptive (2) [adaptive mode appears to ignore HT bits and show HT=3 in details] // 28 68 = HT=3, H=2, data=adaptive (2) // 24 64 = HT=3, H=1, data=adaptive (1) // 20 60 = HT=3, H=off, data=adaptive (0) // 14 74 = HT=3, H=5, data=fixed (5) // 10 70 = HT=3, H=4, data=fixed (4) // 0C 6C = HT=3, H=3, data=fixed (3) // 08 48 = HT=3, H=2, data=fixed (2) // 08 68 = HT=3, H=2, data=fixed (2) // 04 64 = HT=3, H=1, data=fixed (1) // 00 00 = HT=3, H=off, data=fixed (0) // F5V3 confirmed: // 90 70 = HT=3, H=3, adaptive, data=no data // 54 14 = HT=Off, H=5, adaptive, data=tube t=0,h=5 // 54 34 = HT=1, H=5, adaptive, data=tube t=1,h=5 // 50 70 = HT=3, H=4, adaptive, data=tube t=3,h=4 // 4C 6C = HT=3, H=3, adaptive, data=tube t=3,h=3 // 4C 4C = HT=2, H=3, adaptive, data=tube t=2,h=3 // 4C 2C = HT=1, H=3, adaptive, data=tube t=1,h=3 // 4C 0C = HT=off, H=3, adaptive, data=tube t=0,h=3 // 48 08 = HT=off, H=2, adaptive, data=tube t=0,h=2 // 44 04 = HT=off, H=1, adaptive, data=tube t=0,h=1 // 40 00 = HT=off,H=off, adaptive, data=tube t=0,h=0 // 34 74 = HT=3, H=5, adaptive, data=s1 (5) // 30 70 = HT=3, H=4, adaptive, data=s1 (4) // 2C 6C = HT=3, H=3, adaptive, data=s1 (3) // 28 68 = HT=3, H=2, adaptive, data=s1 (2) // 24 64 = HT=3, H=1, adaptive, data=s1 (1) // F3V6 confirmed: // 84 24 = HT=3, H=3, disconnect=adaptive, data=no data // 50 90 = HT=4, H=4, disconnect=adaptive, data=tube t=4,h=4 // 44 84 = HT=4, H=1, disconnect=adaptive, data=tube t=4,h=1 // 40 80 = HT=4, H=Off,disconnect=adaptive, data=tube t=4,h=0 // 4C 6C = HT=3, H=3, disconnect=adaptive, data=tube t=3,h=3 // 48 68 = HT=3, H=2, disconnect=adaptive, data=tube t=3,h=2 // 44 44 = HT=2, H=1, disconnect=adaptive, data=tube t=2,h=1 // 48 28 = HT=1, H=2, disconnect=adaptive, data=tube t=1,h=2 // 54 14 = HT=Off,H=5, disconnect=adaptive data=tube t=0,h=5 // 34 14 = HT=3, H=5, disconnect=adaptive, data=s1 (5) // 30 70 = HT=3, H=4, disconnect=adaptive, data=s1 (4) // 2C 6C = HT=3, H=3, disconnect=adaptive, data=s1 (3) // 28 08 = HT=3, H=2, disconnect=adaptive, data=s1 (2) // 20 20 = HT=3, H=Off, disconnect=adaptive, data=s1 (0) // 14 14 = HT=3, H=3, disconnect=fixed, data=classic (5) // 10 10 = HT=3, H=4, disconnect=fixed, data=classic (4) [fixed mode appears to ignore HT bits and show HT=3 in details] // 0C 0C = HT=3, H=3, disconnect=fixed, data=classic (3) // 08 08 = HT=3, H=2, disconnect=fixed, data=classic (2) // 04 64 = HT=3, H=1, disconnect=fixed, data=classic (1) // The data is consistent among all fileVersion 3 models: F0V6, F5V3, F3V6. // // NOTE: F5V3 and F3V6 charts report the "Adaptive" setting as "System One" and the "Fixed" // setting as "Classic", despite labeling the settings "Adaptive" and "Fixed" just like F0V6. // F0V6 is consistent and labels both settings and chart as "Adaptive" and "Fixed". // // 400G and 502G appear to omit the humidifier settings in their details, though they // do support humidifiers, and will show the humidification in the charts. void PRS1DataChunk::ParseHumidifierSettingV3(unsigned char byte1, unsigned char byte2, bool add_setting) { bool humidifier_present = true; bool humidfixed = false; // formerly called "Classic" bool humidadaptive = false; // formerly called "System One" bool tubepresent = false; bool passover = false; bool error = false; // Byte 1: 0x90 (no humidifier data), 0x50 (15ht, tube 4/5, humid 4), 0x54 (15ht, tube 5, humid 5) 0x4c (15ht, tube temp 3, humidifier 3) // 0x0c (15, tube 3, humid 3, fixed) // 0b1001 0000 no humidifier data // 0b0101 0000 tube 4 and 5, humidifier 4 // 0b0101 0100 15ht, tube 5, humidifier 5 // 0b0100 1100 15ht, tube 3, humidifier 3 // 0b1011 0000 15, tube 3, humidifier 3, "Error" on humidification chart with asterisk at 4 // 0b0111 0000 15, tube 3, humidifier 3, "Passover" on humidification chart with notch at 4 // 842 = humidifier status // 1 84 = humidifier setting // ?? CHECK_VALUE(byte1 & 3, 0); int humid = byte1 >> 5; switch (humid) { case 0: humidfixed = true; break; // fixed, ignores tubetemp bits and reports tubetemp=3 case 1: humidadaptive = true; break; // adaptive, ignores tubetemp bits and reports tubetemp=3 case 2: tubepresent = true; break; // heated tube case 3: passover = true; break; // passover mode (only visible in chart) case 4: humidifier_present = false; break; // no humidifier, reports tubetemp=3 and humidlevel=3 case 5: error = true; break; // "Error" in humidification chart, reports tubetemp=3 and humidlevel=3 in settings default: UNEXPECTED_VALUE(humid, "known value"); break; } int humidlevel = (byte1 >> 2) & 7; // Byte 2: 0xB4 (15ht, tube 5, humid 5), 0xB0 (15ht, tube 5, humid 4), 0x90 (tube 4, humid 4), 0x6C (15ht, tube temp 3, humidifier 3) // 0x80? // 0b1011 0100 15ht, tube 5, humidifier 5 // 0b1011 0000 15ht, tube 5, humidifier 4 // 0b1001 0000 tube 4, humidifier 4 // 0b0110 1100 15ht, tube 3, humidifier 3 // 842 = tube temperature // 1 84 = humidity level when using heated tube, thus far always identical to humidlevel // ?? CHECK_VALUE(byte2 & 3, 0); int tubehumidlevel = (byte2 >> 2) & 7; CHECK_VALUE(humidlevel, tubehumidlevel); // thus far always the same int tubetemp = (byte2 >> 5) & 7; if (humidifier_present) { if (humidlevel > 5 || humidlevel < 0) UNEXPECTED_VALUE(humidlevel, "0-5"); // 0=off is valid when a humidifier is attached if (humid == 2) { // heated tube if (tubetemp > 5 || tubetemp < 0) UNEXPECTED_VALUE(tubetemp, "0-5"); // TODO: maybe this is only if heated tube? 0=off is valid even in heated tube mode } } // TODO: move this up into the switch statement above, given how many modes there now are. HumidMode humidmode = HUMID_Fixed; if (tubepresent) { humidmode = HUMID_HeatedTube; } else if (humidadaptive) { humidmode = HUMID_Adaptive; } else if (passover) { humidmode = HUMID_Passover; } else if (error) { humidmode = HUMID_Error; } if (add_setting) { this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HUMID_STATUS, humidifier_present)); if (humidifier_present) { this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HUMID_MODE, humidmode)); if (humidmode == HUMID_HeatedTube) { this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HEATED_TUBE_TEMP, tubetemp)); this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HUMID_LEVEL, tubehumidlevel)); } else { this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HUMID_LEVEL, humidlevel)); } } } // Check for previously unseen data that we expect to be normal: if (family == 0) { // All variations seen. } else if (family == 5) { if (tubepresent) { // All tube temperature and humidity levels seen. } else if (humidadaptive) { // All humidity levels seen. } else if (humidfixed) { if (humidlevel < 3) UNEXPECTED_VALUE(humidlevel, "3-5"); } } else if (family == 3) { if (tubepresent) { // All tube temperature and humidity levels seen. } else if (humidadaptive) { // All humidity levels seen. } else if (humidfixed) { // All humidity levels seen. } } } void PRS1DataChunk::ParseTubingTypeV3(unsigned char type) { int diam; switch (type) { case 0: diam = 22; break; case 1: diam = 15; break; case 2: diam = 15; break; // 15HT, though the reports only say "15" for DreamStation models case 3: diam = 12; break; // seen on DreamStation Go models case 4: diam = 12; break; // HT12, seen on DreamStation 2 models default: UNEXPECTED_VALUE(type, "known tubing type"); return; } this->AddEvent(new PRS1ParsedSettingEvent(PRS1_SETTING_HOSE_DIAMETER, diam)); } //******************************************************************************************** // MARK: - // MARK: Parse and verify chunk from stream typedef quint16 crc16_t; typedef quint32 crc32_t; static crc16_t CRC16(unsigned char * data, size_t data_len, crc16_t crc=0); static crc32_t CRC32(const unsigned char *data, size_t data_len, crc32_t crc=0xffffffffU); static crc32_t CRC32wchar(const unsigned char *data, size_t data_len, crc32_t crc=0xffffffffU); PRS1DataChunk::PRS1DataChunk(RawDataDevice & f, PRS1Loader* in_loader) : loader(in_loader) { m_path = f.name(); } PRS1DataChunk::~PRS1DataChunk() { for (int i=0; i < m_parsedData.count(); i++) { PRS1ParsedEvent* e = m_parsedData.at(i); delete e; } } PRS1DataChunk* PRS1DataChunk::ParseNext(RawDataDevice & f, PRS1Loader* loader) { PRS1DataChunk* out_chunk = nullptr; PRS1DataChunk* chunk = new PRS1DataChunk(f, loader); do { // Parse the header and calculate its checksum. bool ok = chunk->ReadHeader(f); if (!ok) { break; } // Make sure the calculated checksum matches the stored checksum. if (chunk->calcChecksum != chunk->storedChecksum) { qWarning() << chunk->m_path << "header checksum calc" << chunk->calcChecksum << "!= stored" << chunk->storedChecksum; break; } // Read the block's data and calculate the block CRC. ok = chunk->ReadData(f); if (!ok) { break; } // Make sure the calculated CRC over the entire chunk (header and data) matches the stored CRC. if (chunk->calcCrc != chunk->storedCrc) { // Corrupt data block, warn about it. qWarning() << chunk->m_path << "@" << chunk->m_filepos << "block CRC calc" << QTHEX << chunk->calcCrc << "!= stored" << QTHEX << chunk->storedCrc; // TODO: When this happens, it's usually because the chunk was truncated and another chunk header // exists within the blockSize bytes. In theory it should be possible to rewing and resync by // looking for another chunk header with the same fileVersion, htype, family, familyVersion, and // ext (blockSize and other fields could vary). // // But this is quite rare, so for now we bail on the rest of the file. break; } // Only return the chunk if it has passed all tests above. out_chunk = chunk; } while (false); if (out_chunk == nullptr) delete chunk; return out_chunk; } bool PRS1DataChunk::ReadHeader(RawDataDevice & f) { bool ok = false; do { // Read common header fields. this->m_filepos = f.pos(); this->m_header = f.read(15); if (this->m_header.size() != 15) { if (this->m_header.size() == 0) { qWarning() << this->m_path << "empty, skipping"; } else { qWarning() << this->m_path << "file too short?"; } break; } unsigned char * header = (unsigned char *)this->m_header.data(); this->fileVersion = header[0]; // Correlates to DataFileVersion in PROP[erties].TXT, only 2 or 3 has ever been observed this->blockSize = (header[2] << 8) | header[1]; this->htype = header[3]; // 00 = normal, 01=waveform this->family = header[4]; this->familyVersion = header[5]; this->ext = header[6]; this->sessionid = (header[10] << 24) | (header[9] << 16) | (header[8] << 8) | header[7]; this->timestamp = (header[14] << 24) | (header[13] << 16) | (header[12] << 8) | header[11]; // Do a few early sanity checks before any variable-length header data. if (this->blockSize == 0) { qWarning() << this->m_path << "@" << QTHEX << this->m_filepos << "blocksize 0, skipping remainder of file"; break; } if (this->fileVersion < 2 || this->fileVersion > 3) { if (this->m_filepos > 0) { qWarning() << this->m_path << "@" << QTHEX << this->m_filepos << "corrupt PRS1 header, skipping remainder of file"; } else { qWarning() << this->m_path << "unsupported PRS1 header version" << this->fileVersion; } break; } if (this->htype != PRS1_HTYPE_NORMAL && this->htype != PRS1_HTYPE_INTERVAL) { qWarning() << this->m_path << "unexpected htype:" << this->htype; break; } // Read format-specific variable-length header data. bool hdr_ok = false; if (this->htype != PRS1_HTYPE_INTERVAL) { // Not just waveforms: the 1160P uses this for its .002 events file. // Not a waveform/interval chunk switch (this->fileVersion) { case 2: hdr_ok = ReadNormalHeaderV2(f); break; case 3: hdr_ok = ReadNormalHeaderV3(f); break; default: //hdr_ok remains false, warning is above break; } } else { // Waveform/interval chunk hdr_ok = ReadWaveformHeader(f); } if (!hdr_ok) { break; } // The 8bit checksum comes at the end. QByteArray checksum = f.read(1); if (checksum.size() < 1) { qWarning() << this->m_path << "read error header checksum"; break; } this->storedChecksum = checksum.data()[0]; // Calculate 8bit additive header checksum. header = (unsigned char *)this->m_header.data(); // important because its memory location could move int header_size = this->m_header.size(); quint8 achk=0; for (int i=0; i < header_size; i++) { achk += header[i]; } this->calcChecksum = achk; // Append the stored checksum to the raw data *after* calculating the checksum on the preceding data. this->m_header.append(checksum); ok = true; } while (false); return ok; } bool PRS1DataChunk::ReadNormalHeaderV2(RawDataDevice & /*f*/) { this->m_headerblock = QByteArray(); return true; // always OK } bool PRS1DataChunk::ReadNormalHeaderV3(RawDataDevice & f) { bool ok = false; unsigned char * header; QByteArray headerB2; // This is a new device, byte 15 is header data block length // followed by variable, data byte pairs do { QByteArray extra = f.read(1); if (extra.size() < 1) { qWarning() << this->m_path << "read error extended header"; break; } this->m_header.append(extra); header = (unsigned char *)this->m_header.data(); int hdb_len = header[15]; int hdb_size = hdb_len * 2; headerB2 = f.read(hdb_size); if (headerB2.size() != hdb_size) { qWarning() << this->m_path << "read error in extended header"; break; } this->m_headerblock = headerB2; this->m_header.append(headerB2); header = (unsigned char *)this->m_header.data(); const unsigned char * hd = (unsigned char *)headerB2.constData(); int pos = 0; int recs = header[15]; for (int i=0; ihblock[hd[pos]] = hd[pos+1]; pos += 2; } ok = true; } while (false); return ok; } bool PRS1DataChunk::ReadWaveformHeader(RawDataDevice & f) { bool ok = false; unsigned char * header; do { // Read the fixed-length waveform header. QByteArray extra = f.read(4); if (extra.size() != 4) { qWarning() << this->m_path << "read error in waveform header"; break; } this->m_header.append(extra); header = (unsigned char *)this->m_header.data(); // Parse the fixed-length portion. this->interval_count = header[0x0f] | header[0x10] << 8; this->interval_seconds = header[0x11]; // not always 1 after all this->duration = this->interval_count * this->interval_seconds; // ??? the last entry doesn't always seem to be a full interval? quint8 wvfm_signals = header[0x12]; // Read the variable-length data + trailing byte. int ws_size = (this->fileVersion == 3) ? 4 : 3; int sbsize = wvfm_signals * ws_size + 1; extra = f.read(sbsize); if (extra.size() != sbsize) { qWarning() << this->m_path << "read error in waveform header 2"; break; } this->m_header.append(extra); header = (unsigned char *)this->m_header.data(); // Parse the variable-length waveform information. // TODO: move these checks into the parser, after the header checksum has been verified // For now just skip them for the one known sample with a bad checksum. if (this->sessionid == 268962649) return true; int pos = 0x13; for (int i = 0; i < wvfm_signals; ++i) { quint8 kind = header[pos]; CHECK_VALUE(kind, i); // always seems to range from 0...wvfm_signals-1, alert if not quint16 interleave = header[pos + 1] | header[pos + 2] << 8; // samples per interval if (this->fileVersion == 2) { this->waveformInfo.push_back(PRS1Waveform(interleave, kind)); pos += 3; } else if (this->fileVersion == 3) { int always_8 = header[pos + 3]; // sample size in bits? CHECK_VALUE(always_8, 8); this->waveformInfo.push_back(PRS1Waveform(interleave, kind)); pos += 4; } } // And the trailing byte, whatever it is. int always_0 = header[pos]; CHECK_VALUE(always_0, 0); ok = true; } while (false); return ok; } bool PRS1DataChunk::ReadData(RawDataDevice & f) { bool ok = false; do { // Read data block int data_size = this->blockSize - this->m_header.size(); if (data_size < 0) { qWarning() << this->m_path << "chunk size smaller than header"; break; } this->m_data = f.read(data_size); if (this->m_data.size() < data_size) { qWarning() << this->m_path << "less data in file than specified in header"; break; } // Extract the stored CRC from the data buffer and calculate the current CRC. if (this->fileVersion==3) { // The last 4 bytes contain a CRC32 checksum of the data. if (!ExtractStoredCrc(4)) { break; } this->calcCrc = CRC32wchar((unsigned char *)this->m_data.data(), this->m_data.size()); } else { // The last 2 bytes contain a CRC16 checksum of the data. if (!ExtractStoredCrc(2)) { break; } this->calcCrc = CRC16((unsigned char *)this->m_data.data(), this->m_data.size()); } ok = true; } while (false); return ok; } bool PRS1DataChunk::ExtractStoredCrc(int size) { // Make sure there's enough data for the CRC. int offset = this->m_data.size() - size; if (offset < 0) { qWarning() << this->m_path << "chunk truncated"; return false; } // Read the last 16- or 32-bit little-endian integer. quint32 storedCrc = 0; unsigned char* data = (unsigned char*)this->m_data.data(); for (int i=0; i < size; i++) { storedCrc |= data[offset+i] << (8*i); } this->storedCrc = storedCrc; // Drop the CRC from the data. this->m_data.chop(size); return true; } // CRC-16/KERMIT, polynomial: 0x11021, bit reverse algorithm // Table generated by crcmod (crc-kermit) typedef quint16 crc16_t; static crc16_t CRC16(unsigned char * data, size_t data_len, crc16_t crc) { static const crc16_t table[256] = { 0x0000U, 0x1189U, 0x2312U, 0x329bU, 0x4624U, 0x57adU, 0x6536U, 0x74bfU, 0x8c48U, 0x9dc1U, 0xaf5aU, 0xbed3U, 0xca6cU, 0xdbe5U, 0xe97eU, 0xf8f7U, 0x1081U, 0x0108U, 0x3393U, 0x221aU, 0x56a5U, 0x472cU, 0x75b7U, 0x643eU, 0x9cc9U, 0x8d40U, 0xbfdbU, 0xae52U, 0xdaedU, 0xcb64U, 0xf9ffU, 0xe876U, 0x2102U, 0x308bU, 0x0210U, 0x1399U, 0x6726U, 0x76afU, 0x4434U, 0x55bdU, 0xad4aU, 0xbcc3U, 0x8e58U, 0x9fd1U, 0xeb6eU, 0xfae7U, 0xc87cU, 0xd9f5U, 0x3183U, 0x200aU, 0x1291U, 0x0318U, 0x77a7U, 0x662eU, 0x54b5U, 0x453cU, 0xbdcbU, 0xac42U, 0x9ed9U, 0x8f50U, 0xfbefU, 0xea66U, 0xd8fdU, 0xc974U, 0x4204U, 0x538dU, 0x6116U, 0x709fU, 0x0420U, 0x15a9U, 0x2732U, 0x36bbU, 0xce4cU, 0xdfc5U, 0xed5eU, 0xfcd7U, 0x8868U, 0x99e1U, 0xab7aU, 0xbaf3U, 0x5285U, 0x430cU, 0x7197U, 0x601eU, 0x14a1U, 0x0528U, 0x37b3U, 0x263aU, 0xdecdU, 0xcf44U, 0xfddfU, 0xec56U, 0x98e9U, 0x8960U, 0xbbfbU, 0xaa72U, 0x6306U, 0x728fU, 0x4014U, 0x519dU, 0x2522U, 0x34abU, 0x0630U, 0x17b9U, 0xef4eU, 0xfec7U, 0xcc5cU, 0xddd5U, 0xa96aU, 0xb8e3U, 0x8a78U, 0x9bf1U, 0x7387U, 0x620eU, 0x5095U, 0x411cU, 0x35a3U, 0x242aU, 0x16b1U, 0x0738U, 0xffcfU, 0xee46U, 0xdcddU, 0xcd54U, 0xb9ebU, 0xa862U, 0x9af9U, 0x8b70U, 0x8408U, 0x9581U, 0xa71aU, 0xb693U, 0xc22cU, 0xd3a5U, 0xe13eU, 0xf0b7U, 0x0840U, 0x19c9U, 0x2b52U, 0x3adbU, 0x4e64U, 0x5fedU, 0x6d76U, 0x7cffU, 0x9489U, 0x8500U, 0xb79bU, 0xa612U, 0xd2adU, 0xc324U, 0xf1bfU, 0xe036U, 0x18c1U, 0x0948U, 0x3bd3U, 0x2a5aU, 0x5ee5U, 0x4f6cU, 0x7df7U, 0x6c7eU, 0xa50aU, 0xb483U, 0x8618U, 0x9791U, 0xe32eU, 0xf2a7U, 0xc03cU, 0xd1b5U, 0x2942U, 0x38cbU, 0x0a50U, 0x1bd9U, 0x6f66U, 0x7eefU, 0x4c74U, 0x5dfdU, 0xb58bU, 0xa402U, 0x9699U, 0x8710U, 0xf3afU, 0xe226U, 0xd0bdU, 0xc134U, 0x39c3U, 0x284aU, 0x1ad1U, 0x0b58U, 0x7fe7U, 0x6e6eU, 0x5cf5U, 0x4d7cU, 0xc60cU, 0xd785U, 0xe51eU, 0xf497U, 0x8028U, 0x91a1U, 0xa33aU, 0xb2b3U, 0x4a44U, 0x5bcdU, 0x6956U, 0x78dfU, 0x0c60U, 0x1de9U, 0x2f72U, 0x3efbU, 0xd68dU, 0xc704U, 0xf59fU, 0xe416U, 0x90a9U, 0x8120U, 0xb3bbU, 0xa232U, 0x5ac5U, 0x4b4cU, 0x79d7U, 0x685eU, 0x1ce1U, 0x0d68U, 0x3ff3U, 0x2e7aU, 0xe70eU, 0xf687U, 0xc41cU, 0xd595U, 0xa12aU, 0xb0a3U, 0x8238U, 0x93b1U, 0x6b46U, 0x7acfU, 0x4854U, 0x59ddU, 0x2d62U, 0x3cebU, 0x0e70U, 0x1ff9U, 0xf78fU, 0xe606U, 0xd49dU, 0xc514U, 0xb1abU, 0xa022U, 0x92b9U, 0x8330U, 0x7bc7U, 0x6a4eU, 0x58d5U, 0x495cU, 0x3de3U, 0x2c6aU, 0x1ef1U, 0x0f78U, }; for (size_t i=0; i < data_len; i++) { crc = table[(*data ^ (unsigned char)crc) & 0xFF] ^ (crc >> 8); data++; } return crc; } // CRC-32/MPEG-2, polynomial: 0x104C11DB7 // Table generated by crcmod (crc-32-mpeg) static crc32_t CRC32(const unsigned char *data, size_t data_len, crc32_t crc) { static const crc32_t table[256] = { 0x00000000U, 0x04c11db7U, 0x09823b6eU, 0x0d4326d9U, 0x130476dcU, 0x17c56b6bU, 0x1a864db2U, 0x1e475005U, 0x2608edb8U, 0x22c9f00fU, 0x2f8ad6d6U, 0x2b4bcb61U, 0x350c9b64U, 0x31cd86d3U, 0x3c8ea00aU, 0x384fbdbdU, 0x4c11db70U, 0x48d0c6c7U, 0x4593e01eU, 0x4152fda9U, 0x5f15adacU, 0x5bd4b01bU, 0x569796c2U, 0x52568b75U, 0x6a1936c8U, 0x6ed82b7fU, 0x639b0da6U, 0x675a1011U, 0x791d4014U, 0x7ddc5da3U, 0x709f7b7aU, 0x745e66cdU, 0x9823b6e0U, 0x9ce2ab57U, 0x91a18d8eU, 0x95609039U, 0x8b27c03cU, 0x8fe6dd8bU, 0x82a5fb52U, 0x8664e6e5U, 0xbe2b5b58U, 0xbaea46efU, 0xb7a96036U, 0xb3687d81U, 0xad2f2d84U, 0xa9ee3033U, 0xa4ad16eaU, 0xa06c0b5dU, 0xd4326d90U, 0xd0f37027U, 0xddb056feU, 0xd9714b49U, 0xc7361b4cU, 0xc3f706fbU, 0xceb42022U, 0xca753d95U, 0xf23a8028U, 0xf6fb9d9fU, 0xfbb8bb46U, 0xff79a6f1U, 0xe13ef6f4U, 0xe5ffeb43U, 0xe8bccd9aU, 0xec7dd02dU, 0x34867077U, 0x30476dc0U, 0x3d044b19U, 0x39c556aeU, 0x278206abU, 0x23431b1cU, 0x2e003dc5U, 0x2ac12072U, 0x128e9dcfU, 0x164f8078U, 0x1b0ca6a1U, 0x1fcdbb16U, 0x018aeb13U, 0x054bf6a4U, 0x0808d07dU, 0x0cc9cdcaU, 0x7897ab07U, 0x7c56b6b0U, 0x71159069U, 0x75d48ddeU, 0x6b93dddbU, 0x6f52c06cU, 0x6211e6b5U, 0x66d0fb02U, 0x5e9f46bfU, 0x5a5e5b08U, 0x571d7dd1U, 0x53dc6066U, 0x4d9b3063U, 0x495a2dd4U, 0x44190b0dU, 0x40d816baU, 0xaca5c697U, 0xa864db20U, 0xa527fdf9U, 0xa1e6e04eU, 0xbfa1b04bU, 0xbb60adfcU, 0xb6238b25U, 0xb2e29692U, 0x8aad2b2fU, 0x8e6c3698U, 0x832f1041U, 0x87ee0df6U, 0x99a95df3U, 0x9d684044U, 0x902b669dU, 0x94ea7b2aU, 0xe0b41de7U, 0xe4750050U, 0xe9362689U, 0xedf73b3eU, 0xf3b06b3bU, 0xf771768cU, 0xfa325055U, 0xfef34de2U, 0xc6bcf05fU, 0xc27dede8U, 0xcf3ecb31U, 0xcbffd686U, 0xd5b88683U, 0xd1799b34U, 0xdc3abdedU, 0xd8fba05aU, 0x690ce0eeU, 0x6dcdfd59U, 0x608edb80U, 0x644fc637U, 0x7a089632U, 0x7ec98b85U, 0x738aad5cU, 0x774bb0ebU, 0x4f040d56U, 0x4bc510e1U, 0x46863638U, 0x42472b8fU, 0x5c007b8aU, 0x58c1663dU, 0x558240e4U, 0x51435d53U, 0x251d3b9eU, 0x21dc2629U, 0x2c9f00f0U, 0x285e1d47U, 0x36194d42U, 0x32d850f5U, 0x3f9b762cU, 0x3b5a6b9bU, 0x0315d626U, 0x07d4cb91U, 0x0a97ed48U, 0x0e56f0ffU, 0x1011a0faU, 0x14d0bd4dU, 0x19939b94U, 0x1d528623U, 0xf12f560eU, 0xf5ee4bb9U, 0xf8ad6d60U, 0xfc6c70d7U, 0xe22b20d2U, 0xe6ea3d65U, 0xeba91bbcU, 0xef68060bU, 0xd727bbb6U, 0xd3e6a601U, 0xdea580d8U, 0xda649d6fU, 0xc423cd6aU, 0xc0e2d0ddU, 0xcda1f604U, 0xc960ebb3U, 0xbd3e8d7eU, 0xb9ff90c9U, 0xb4bcb610U, 0xb07daba7U, 0xae3afba2U, 0xaafbe615U, 0xa7b8c0ccU, 0xa379dd7bU, 0x9b3660c6U, 0x9ff77d71U, 0x92b45ba8U, 0x9675461fU, 0x8832161aU, 0x8cf30badU, 0x81b02d74U, 0x857130c3U, 0x5d8a9099U, 0x594b8d2eU, 0x5408abf7U, 0x50c9b640U, 0x4e8ee645U, 0x4a4ffbf2U, 0x470cdd2bU, 0x43cdc09cU, 0x7b827d21U, 0x7f436096U, 0x7200464fU, 0x76c15bf8U, 0x68860bfdU, 0x6c47164aU, 0x61043093U, 0x65c52d24U, 0x119b4be9U, 0x155a565eU, 0x18197087U, 0x1cd86d30U, 0x029f3d35U, 0x065e2082U, 0x0b1d065bU, 0x0fdc1becU, 0x3793a651U, 0x3352bbe6U, 0x3e119d3fU, 0x3ad08088U, 0x2497d08dU, 0x2056cd3aU, 0x2d15ebe3U, 0x29d4f654U, 0xc5a92679U, 0xc1683bceU, 0xcc2b1d17U, 0xc8ea00a0U, 0xd6ad50a5U, 0xd26c4d12U, 0xdf2f6bcbU, 0xdbee767cU, 0xe3a1cbc1U, 0xe760d676U, 0xea23f0afU, 0xeee2ed18U, 0xf0a5bd1dU, 0xf464a0aaU, 0xf9278673U, 0xfde69bc4U, 0x89b8fd09U, 0x8d79e0beU, 0x803ac667U, 0x84fbdbd0U, 0x9abc8bd5U, 0x9e7d9662U, 0x933eb0bbU, 0x97ffad0cU, 0xafb010b1U, 0xab710d06U, 0xa6322bdfU, 0xa2f33668U, 0xbcb4666dU, 0xb8757bdaU, 0xb5365d03U, 0xb1f740b4U, }; for (size_t i=0; i < data_len; i++) { crc = table[(*data ^ (unsigned char)(crc >> 24)) & 0xFF] ^ (crc << 8); data++; } return crc; } // The PRS1 CRC32 considers every byte a 32-bit wchar_t, presumably due to // use of the STM32 CRC calculation unit, in which "CRC computation is done // on the whole 32-bit data word, and not byte per byte". static crc32_t CRC32wchar(const unsigned char *data, size_t data_len, crc32_t crc) { for (size_t i=0; i < data_len; i++) { static unsigned char wch[4] = { 0, 0, 0, 0 }; wch[3] = *data++; crc = CRC32(wch, 4, crc); } return crc; }