auto-trading/tests/test_utils.py

67 lines
1.9 KiB
Python

import torch
import numpy as np
import os
from sklearn.preprocessing import MinMaxScaler
from src.models import transformer_model
from src.utils import seed_everything, scale_data, save_model, load_model
def test_seed_everything():
# Set a seed
seed_everything(42)
# Generate some random numbers
np_random_nums = np.random.rand(5)
torch_random_nums = torch.rand(5)
# Set the seed again
seed_everything(42)
# Generate some more random numbers
np_random_nums_2 = np.random.rand(5)
torch_random_nums_2 = torch.rand(5)
# Check that the sets of random numbers are equal
assert np.all(np_random_nums == np_random_nums_2)
assert torch.all(torch_random_nums == torch_random_nums_2)
def test_scale_data():
# Create some mock data
data = np.random.rand(100, 10)
# Scale the data
scaled_data, scaler = scale_data(data)
# Check that the scaled data has the correct shape
assert scaled_data.shape == data.shape
# Check that the scaled data is actually scaled
assert np.all(0 <= scaled_data) and np.all(scaled_data <= 1)
# Check that the scaler is a MinMaxScaler
assert isinstance(scaler, MinMaxScaler)
def test_save_and_load_model():
# Instantiate the model
model = transformer_model.TransformerModel()
# Save the model
save_model(model, 'test_model.pt')
# Check that the model file was created
assert os.path.isfile('test_model.pt')
# Load the model
loaded_model = load_model(transformer_model.TransformerModel(), 'test_model.pt')
# Check that the loaded model has the same parameters as the original model
for p1, p2 in zip(model.parameters(), loaded_model.parameters()):
assert torch.all(p1.eq(p2))
# Remove the model file
os.remove('test_model.pt')
if __name__ == "__main__":
test_seed_everything()
test_scale_data()
test_save_and_load_model()