mirror of
https://github.com/fastai/fastbook.git
synced 2025-04-05 18:30:44 +00:00
271 lines
400 KiB
Plaintext
271 lines
400 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Appendix: Jupyter notebook 101"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Introduction"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"2"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"1+1"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Writing"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"1.5"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"3/2"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Modes"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Other Important Considerations"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Markdown formatting\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Italics, Bold, Strikethrough, Inline, Blockquotes and Links"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Headings"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Lists"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Code Capabilities"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Import necessary libraries\n",
|
||
|
"from fastai2.vision.all import * \n",
|
||
|
"import matplotlib.pyplot as plt"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"from PIL import Image"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"text/plain": [
|
||
|
"(1, 2, 4, 8)"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"a = 1\n",
|
||
|
"b = a + 1\n",
|
||
|
"c = b + a + 1\n",
|
||
|
"d = c + b + a + 1\n",
|
||
|
"a, b, c ,d"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3xV9eH/8dcnm0AgkFw2IYyEITITpgQV965aR1WWyk+tWvu11vGr9dt+1Wqr1tVqUcNQq1WqViuidYETCEtGIAlhhZVFEkLIvJ/vH4l+bQrmhtybc8f7+Xjk4Y33JHl/csg7J+dzPvcYay0iIuK/wpwOICIiP0xFLSLi51TUIiJ+TkUtIuLnVNQiIn4uwhefNDEx0SYnJ/viU4uIBKXVq1cXW2tdR3vOJ0WdnJxMVlaWLz61iEhQMsbsPNZzOvUhIuLnVNQiIn5ORS0i4udU1CIifk5FLSLi5zwqamPMz40xm4wxG40xrxhjYnwdTEREGrVY1MaYPsCtQJq1dgQQDlzh62AiItLI01MfEUAHY0wEEAvs9V0kEZHAs3pnKc8tz8cXLx3dYlFba/cAjwC7gH1AubX2g+bbGWPmGmOyjDFZRUVFXg8qIuKv8goPce3CLF5esZOq2gavf35PTn10BS4EBgC9gY7GmKubb2etnWetTbPWprlcR10FKSISdPaXVzMzcxURYWEsmjOBjtHeX/DtyamP04Dt1toia20d8AYw2etJREQCTPmROmbNX0n5kToWzE4nKSHWJ1/Hk6LeBUw0xsQaYwwwHcj2SRoRkQBRXdfA3EVZbCuq5NmrxzGiTxeffS1PzlGvABYDa4ANTR8zz2eJRET8XIPb8l+vrWPF9lIe+fEoTkpJ9OnX8+hkirX2PuA+nyYREQkA1lp+884mlmzYz6/OHcaFo/v4/GtqZaKISCv8+dNtLPpqJ3MzBnLd1IHt8jVV1CIiHno9azd/eH8rF43uzV1nDW23r6uiFhHxwCdbCrnrjQ1MTUnk95eOIizMtNvXVlGLiLRg7a6D3PTyGob1iuOZq8cRFdG+1amiFhH5AflFlcxZsApXXDTzZ42nkw8WtLRERS0icgyFFdXMyFxJmDEsmjMeV1y0Izna/1eDiEgAOFRdx6z5qyg9XMurcyeSnNjRsSw6ohYRaaamvoEbXlpNzoFDPHP1OEb2jXc0j46oRUS+x+22/OL1b/gir4THLhvFtFTnX2ROR9QiIk2stdz/bjbvrN/LXWcP5eKxfZ2OBKioRUS+89xn+WR+sZ3ZU5L5fxnts+rQEypqERHgzbUFPLhkC+eO7MW95w6n8cVC/YOKWkRC3vKcIu54/RsmDUzgscvad9WhJ1TUIhLSviko44aXVpPSI46/zBhHdES405H+g4paRELWjuLDzJ6/iq6xUSycnU7nmEinIx2VilpEQlLRoRpmzl+J21oWXTue7p1jnI50TLqOWkRCTmVNPXMWrKKwooa/Xj+BQa5OTkf6QSpqEQkptfVubnxpNZv3VfDcjHGMSerqdKQW6dSHiIQMt9vyy8Xr+Sy3mN9dfCKnDu3hdCSPtFjUxpghxph133urMMbc1h7hRES86eGlW3hr3V7uOHMIl6X1czqOx1o89WGt3QqMBjDGhAN7gDd9nEtExKue/yyfvyzPZ8ak/tx08iCn47RKa099TAe2WWt3+iKMiIgvvL1+L/e/m83ZI3py3/kn+NWqQ0+0tqivAF452hPGmLnGmCxjTFZRUVHbk4mIeMGXecXc/to6xg/oxh8vH024n6069ITHRW2MiQIuAF4/2vPW2nnW2jRrbZrL5fzLAoqIbNpbztwXVzMwsRPPzUgjJtL/Vh16ojVH1GcDa6y1B3wVRkTEW3aXVjFr/io6x0SwYE46XTr456pDT7SmqK/kGKc9RET8SUllDTMyV1Jb72bhnPH06tLB6Uht4lFRG2NigdOBN3wbR0Skbapq65mzMIu9ZUd4YWYaKT3inI7UZh6tTLTWVgEJPs4iItImdQ1ufvryGjYUlPHs1eNIS+7mdCSv0BJyEQkK1lrufmMDn2wt4sEfncgZJ/R0OpLXaAm5iASFRz7YyuLVBdx2Wgo/mZDkdByvUlGLSMBb+OUO/vTJNq4cn8TPpqc4HcfrVNQiEtCWbNjHf7+zidOH9+B/Lgy8VYeeUFGLSMD6alsJt726jrFJXXnqyjFEhAdnpQXnqEQk6GXvq2DuoiySEmJ5YWbgrjr0hIpaRAJOwcEqZs1fScfoCBbOGU98bJTTkXxKl+eJSEA5eLiWmZkrqaptYPENk+kTH9irDj2hohaRgHGktoFrF65i98EjvDhnPEN6Bv6qQ0/o1IeIBIT6Bje3vLKGtbvLeOLy0UwYGDqLpVXUIuL3rLXc+4+NfJhdyG8vOIGzT+zldKR2paIWEb/3+Ie5vLJyNzefMphrJiU7HafdqahFxK+9vGInT3yUy2Vpfbn9jFSn4zhCRS0ifuv9Tfu5962NnDq0Ow/+6MSgXHXoCRW1iPilVTtKufWVtYzsG8/TPwneVYeeCN2Ri4jfyjlwiGsXrKJPfAcyZ6UTGxXaVxKrqEXEr+wrP8LMzJVER4azcM54unUM7lWHnlBRi4jfKK+qY2bmSiqr61k4ezz9usU6HckvhPbfEyLiN6rrGrh+URY7iqtYMCed4b07Ox3Jb6ioRcRxDW7Lz15dy6qdpTx15RgmD0p0OpJf8fQu5PHGmMXGmC3GmGxjzCRfBxOR0GCt5df/2Mj7mw7w6/OGc97I3k5H8jueHlE/ASy11l5qjIkCdOJIRLzi6Y/zeHnFLm6YNojZUwY4HccvtVjUxpjOQAYwC8BaWwvU+jaWiISCV1fu4tF/5XDx2D7cedYQp+P4LU9OfQwEioD5xpi1xpjnjTEdm29kjJlrjMkyxmQVFRV5PaiIBJcPNx/gnjc3kJHq4uFLRobsqkNPeFLUEcBY4Blr7RjgMHBX842stfOstWnW2jSXy+XlmCISTFbvPMjNr6xhRJ8uPHPVWCJDeNWhJzz57hQABdbaFU3vL6axuEVEWi2vsJJrF66iR+cYMmel0zFaF5+1pMWittbuB3YbY749gTQd2OzTVCISlA5UVDMzcyURYYZFc8aT2Cna6UgBwdNfZbcALzdd8ZEPzPZdJBEJRhXVjasOy6pqeXXuJPon/MdUlxyDR0VtrV0HpPk4i4gEqZr6BuYuyiKvsJL5s9M5sW8XpyMFFJ0cEhGfcrst//W39XydX8rjl49maoouNmgtTbWKiM9Ya/ntPzfz7oZ9/P9zhnHRmD5ORwpIKmoR8Zlnl+Wz4MsdXHfSAK7PGOh0nIClohYRn1i8uoCHl27hglG9ueecYU7HCWgqahHxuk+2FnLn37/hpMGJPPLjUYSFadVhW6ioRcSr1u0u46aX1jC0ZxzPXD2WqAjVTFvpOygiXrO9+DBzFqwiMS6K+bPTiYuJdDpSUFBRi4hXFB6qZkZm4ytNLJozge5xMQ4nCh4qahFps0PVdcyev4riQ7XMn5XOgEStOvQmLXgRkTaprXdzw0ur2bL/EM/PTGNUv3inIwUdHVGLyHFzuy2/eH09X+SV8PAlIzllSHenIwUlFbWIHLcHl2Tz9vq9/PKsIVw6rq/TcYKWilpEjstzy/N5/vPtzJqczI3TBjkdJ6ipqEWk1d5au4cHlmRz7om9uPe84bqNlo+pqEWkVT7LLeKOxeuZOLAbj142inCtOvQ5FbWIeGzjnnJueHE1g1ydmDcjjZjIcKcjhQQVtYh4ZGfJYWbNX0l8bBQL54yns1YdthtdRy0iLSqurGFm5krq3ZZX54ynR2etOmxPOqIWkR90uKaeOQtWsb+imhdmpjO4eyenI4Ucj46ojTE7gENAA1BvrdX9E0VCQF2DmxtfXsOmvRXMu2Yc4/p3dTpSSGrNqY9TrLXFPksiIn7FWsudi79heU4RD19yItOH9XA6UsjSqQ8ROaqHl27ljbV7uP30VC5PT3I6TkjztKgt8IExZrUxZu7RNjDGzDXGZBljsoqKiryXUETaXebn23l22Taunpj
|
||
|
"text/plain": [
|
||
|
"<Figure size 432x288 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"plt.plot([a,b,c,d])\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAH0CAIAAACsNP32AAEAAElEQVR4nHz9TbNkSbIkhqmauZ+Im5mVlVXd/fp9db+PeR+YAcGhCCDCBRcUCrnF/+QP4IrcEhsSFIpAAAgJAgOAQ76vme6urqrMe+O4mykX5n7u7Z4Bo7NLqm5mRpw4x93cTE1VjX92/OmP53xGn+2jf/qDP//n//P/7X/6n/5v/nf/61/+Sfv0Hvfx3X/5f/k//Of/p/+9v/x//lf/8p/9y3/xc+WvEp8jMSl5S9qJI9TOOMT3Y9x/9avz7/7uu3/8h9/+8P1jnCAOJSVJIhIAAJLIcHcnAGTm+l36Q2rHzczO84xxRkTEOM+zuQMwJUma3N1AMzZnxKh3MANJAJK+PP/Yez+OTnLOOedMTci6NYnJhNHdRWVm5sxxzsc5v3zRmC5ZgpIiHcbrJeR+KdLMmpmkiMhMCiRnTjMzrMsgac3Z3N396O3pZkenWxrNDG7v332cc0YEAO+HmUVmZkYIQAiSQunuvd9aa/MMKTJTmCkJkUwRkkCHNbMOdsIBp9JJZK77T7q77Vfd+bp4M+u9t9YohjIiJkQS3VtrNJsZknLGnDPmzEwTzOyMaWbu7u4kJc2REXG73QCQTvL1E41KhjJnZGatBDeQ7F53LDIT63pFTbPTLUnWPZHkdrh7iiQBm3OOEZKaH/1g5Isw5jznnBmT5OHWulkocypDklHu3o1mTXlkQAKbu91kjMAjsvlhx1NrXbARjAiYmTEz5zzHGADqW9eD9v0yM0mZOedUgNORMkwwjJMWDUFLzJE5OZNks+7ulKWBH46XOc7znHNKqje/Ht/aO29+GDEAEDCz1pq7O0hynsNsLd2MqC0wI/zplsRe0HXxBAC5mRGemXNmRJCkt8k+QhFDUnd3p9NANQgAlQAMWZcaiHN89m5H62aGQETU0+xsAAzeWju8mVmmMuOMl9bN3CWNEXPOSJBstwNA++F8eQCJ2/v37//wF7/8j/7Df/63f/UXf/jT9ukrNOEf/+F/+Ff/7X/95fk3//yXf/inf/ZzNo4XZWAig5bKIEfOUxZQxPnjl/zu++fvv//h+fk5Jo09U9J1N9eKlBRjZGbdqb1zjOaWCWrOeY7HfJykADR3SUBKoAkgBRprg9X2ILn2rUSyNlv9vGJiCpAhIQmZEgMAVNGNQMUXkExJYoop2Lp4ANxfhMK15978hBWe8D/9ykxkkoA5SZpFDmktl4p0tbgzVd8LQAO0b1RrTWLmDDkl1f2sBQYTbV0nJE0KgAyswHSt7IiotVs/zMwKIiRjxj5LlJICkmiWUF3ktTcq7Di83rAiLMk6Qc7zNLPW7Nq0dYna51N9HTABA9B7BwC4VI8xK+KP8QylWQMMCMj242A968w0UEYiM2kG0N1v3duMIclpJkydXHeLNBKWBGCRSWvd3PutHTfBzhmITDQAkagl6r3V942YQKv1cEX5ei5v4/76l+TIpAFKQPUVBEMKFcpTgICAsZnDOcaIXLH7evP6ptd9uzaRpN7vmXltsIggXy+g/vB1YXXvsHfE/5/XtWsMIuUkSDNzkgZTPcbazjKuOHiwCaf7WkuqE44wM6wjFLWmUonUVJqt5SnKTLTmVNZ6JlrgTtitv//mm2//5q//2f/yP/mX/+Hf/PKnn9CA3/7qX/93/83/7X/87/+Lbl/+5Be//PDp+M13f/fuZrIDEmigBSzAVDsnvnw5f/WrH/7pHz//5tdfPj8H8ubuOeeVPUG5FiWw9kkmdpZBmAHNHco553h5nmO4s7V2uJ3nSRMBJGhGiRKpzOi9915Z0nmdM73363BbHwcqmSPMlEkBWrEgNMONAoxMAQmEkKlMia/H17pweC3yimgrrBmwdzBJvH7NKyJokgZC1pyQmRGIOuXcAGXMUNZpVqG8e5cRqhUJQqmQVOsxM4MJpYjeu2ASE1QGQICSUmnm12Jdp0RmRaj64dttUEvTaCQITCgzlZlYGev1JjS6O1udt7MC65WgvTyfrTX3IN0M11+qo2XFCSRR2yDP8yRpEIBUzDlzzMyZOdPRWp0cDlub0OrZR0hyOMwciJgRwyxJMmXJyAhlrC3X3FjbwWg0Ae69GXtvvd/ulZQlXMgppDTHgDc3a60TLpMZZGzma9HWNpbgLYEUmJXmkN7MCJ8UoFZBQVQqCVEetAlJQtb9MBnGOKfy7Ztr51BX1LhiB0n3ZrYCep0ZK1vdGRIAIeEGGRhRq5V+ZU/43SODkFl9nNVTbqbMynPZ3Wp5ZyZFA0g4zZ2VWaUOM5Cemckkad5I1jEGgDTV4oQEmDcYBEsIdLhVOpdiAk24Hcft3cdv/vAPf/4f/M2f/8t/8Zd//ketEf/m7/6H/9f/8z/77/4f//mtffnTn3/78VN/Pn/7mx+/68dPlPeAQCZdySmcwS9f5q9+/fIP//jjv/m3X56/KOOAkDGZr9sbrztWt9tNkmJeBy9Ey7RaoRpQSGEwp0gYhaqVKKPAdFKUhOtgqF1XOwS5KoIr/Elwyswzs26wiIjEjIwQgZkWUqTqJ1UTcR9fsRZNM4t68CmYACAyMuvhrmWB3z+gIiIgIJFh4Q65O9yU2XtvYBJS5gyJsLUAJTHXOXVFPqwTnXIZTNLbTzMhSWCt1F1P4wqXFY/O83T31trbmEXy1m9rkRIhUVm7RZFVPF+fYmCVt+Fy96tE/b1a7/rhugwKdbms2JQAJTweDzMYSENEzDnjHBHDvLZuujt2yZyZ3rvqiAK8sZllppQZUym9qVt34XNUNP6dtEJo7WZsZgZ6JGZmJAIELTLOEJU8UFGcgAFyEBYKav0PpgwlUqFEIgGDoT7FkvsUYAcJBEQlITBHZadBE8TATOQOT9eXXV+ElHSVbHU/NzDy+mSrbsgZVyC7th1loGS6wtNaFbLaKftNqi6BkAZBqs90q0ocSNVhKWhHNwdA4NYPcR3q11Hn7mYt14aq2IQ0KDkB1jcDElZHahJKimh23L/+yU/++Jd/+rf//K/+g7/95R//wVPPx3f/9Hf/7X/1f/6//1//j19+86/++V9981d/9tH6+eUc96+evjwENRFpHhOP0PPIc+K7345/85vP/+ZX3//4Oam7t1tMG+c8vJEUogqUygKAOrEzZZlZG6S+YZyDjYbsTqqKcoLZ1teHA4QMIpIi3eshzTnHGBFxVTERse/dOqQgmIwSMlZyFJFjZEQSitQUkhmhGRkCUNE1U4hKjJGmdRDWagV25Kql+Bqe3iZQrzFi1SZrKWTOTJOcAhVCAAbQrBGIeQqQaGbeO826u+ieKWVjk1aIPB+z1iF3AVOZOIKvUE4tSXeShZ7gzVGMN7WDmamKJRBXbR4pgzJNV9BDZtKtSpvCNyok3Z+OCnozzsiNebGpEjQIAlNYhWk6YbRmBsgMtKATcAEpRAKE09Z+TfkhUVVyOuEUKaRa64GVSyBZsF9rjV4Ror0NTwAEBhipR5wSQwQMdAEhZgYUEcEQADFVFYs7VcdEQkYTZdDMyBGhQCIMDsDtZianmcGMNAJGeUyqXSGPCcxEzHHhoXVxuc7KtcDMVu5xhZwm1cOiG1KAJUz0dQTUSjUCNFGabtArmuqSINtrdSW1FZ6kQAg2UNkOaFxpNpEgCAiQQEgxU6mgt0o/V4giADpYP0GmAEWdsalMUauUqyipCtq7Am1/8bf/7I/++A///J/9+V/+5S9/8qn/+Ov/99//63/4+3/4b/71f/9f/OP/+F++789f3b/pjc/Pn+3OT199+vIbQUcKYThTX87x5WU+P/Kffv39d9+9fPky5/BmDWyQgYKbIZG2iyMBoL2F9CAZFtDI58dL5YHGdNJWuic2M6SSoAwgAwBBZ5dUR3duDLhyqIKY68BB7QkpYioy51zwRoTOmXPKiJQJSjGlrE9hFVsOyuwKK5KY2uDP25cVeIU3P67DbeVKbnA392uHkMROMQA0WhZ+9ObwTK1jE24yKtcJs/9YLbeQVlg0gAYzNHomkuu2XG9bMGq9rg8iaaBmsMA3AlBGQClV8oLrGF//OWYo/ei99+sb1da63++
|
||
|
"text/plain": [
|
||
|
"<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=394x500 at 0x7F689F7B16D0>"
|
||
|
]
|
||
|
},
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"output_type": "execute_result"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"Image.open('images/chapter1_cat_example.jpg')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Running the app locally"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Creating a notebook"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"## Shortcuts and tricks"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Command Mode Shortcuts"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Cell Tricks"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"### Line Magics"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"56.1 µs ± 592 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"%timeit [i+1 for i in range(1000)]"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|