fastbook/clean/06_multicat.ipynb

796 lines
16 KiB
Plaintext
Raw Normal View History

2020-03-06 18:19:03 +00:00
{
"cells": [
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 0,
2020-09-03 22:51:00 +00:00
"metadata": {},
"outputs": [],
"source": [
"#hide\n",
2022-04-25 21:02:49 +00:00
"! [ -e /content ] && pip install -Uqq fastbook\n",
2020-09-03 22:51:00 +00:00
"import fastbook\n",
"fastbook.setup_book()"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 1,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
"#hide\n",
2020-09-03 22:51:00 +00:00
"from fastbook import *"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 3,
2020-03-06 18:19:03 +00:00
"metadata": {},
"source": [
2020-05-14 12:18:31 +00:00
"# Other Computer Vision Problems"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 5,
2020-03-06 18:19:03 +00:00
"metadata": {},
"source": [
2020-05-14 12:18:31 +00:00
"## Multi-Label Classification"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 7,
2020-03-06 18:19:03 +00:00
"metadata": {},
"source": [
2020-05-14 12:18:31 +00:00
"### The Data"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 9,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
2020-08-21 19:36:27 +00:00
"from fastai.vision.all import *\n",
2020-03-06 18:19:03 +00:00
"path = untar_data(URLs.PASCAL_2007)"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 11,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"df = pd.read_csv(path/'train.csv')\n",
"df.head()"
]
},
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 13,
2020-03-06 18:19:03 +00:00
"metadata": {},
"source": [
"### Sidebar: Pandas and DataFrames"
]
},
2020-04-28 17:12:59 +00:00
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 15,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-04-28 17:12:59 +00:00
"source": [
"df.iloc[:,0]"
]
},
2020-03-06 18:19:03 +00:00
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 16,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"df.iloc[0,:]\n",
2020-05-14 12:18:31 +00:00
"# Trailing :s are always optional (in numpy, pytorch, pandas, etc.),\n",
2020-03-06 18:19:03 +00:00
"# so this is equivalent:\n",
"df.iloc[0]"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 18,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"df['fname']"
]
},
2020-04-23 13:41:55 +00:00
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 20,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-04-28 17:12:59 +00:00
"source": [
"tmp_df = pd.DataFrame({'a':[1,2], 'b':[3,4]})\n",
"tmp_df"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 21,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-04-28 17:12:59 +00:00
"source": [
"tmp_df['c'] = tmp_df['a']+tmp_df['b']\n",
"tmp_df"
]
},
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 23,
2020-04-28 17:12:59 +00:00
"metadata": {},
"source": [
"### End sidebar"
]
},
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 25,
2020-04-28 17:12:59 +00:00
"metadata": {},
"source": [
2020-05-14 12:18:31 +00:00
"### Constructing a DataBlock"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 29,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
"dblock = DataBlock()"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 31,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
"dsets = dblock.datasets(df)"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 33,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
2020-04-28 17:12:59 +00:00
"len(dsets.train),len(dsets.valid)"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 34,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-04-28 17:12:59 +00:00
"source": [
"x,y = dsets.train[0]\n",
"x,y"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 36,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-04-28 17:12:59 +00:00
"source": [
"x['fname']"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 37,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"dblock = DataBlock(get_x = lambda r: r['fname'], get_y = lambda r: r['labels'])\n",
"dsets = dblock.datasets(df)\n",
"dsets.train[0]"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 39,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"def get_x(r): return r['fname']\n",
"def get_y(r): return r['labels']\n",
"dblock = DataBlock(get_x = get_x, get_y = get_y)\n",
"dsets = dblock.datasets(df)\n",
"dsets.train[0]"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 42,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"def get_x(r): return path/'train'/r['fname']\n",
"def get_y(r): return r['labels'].split(' ')\n",
"dblock = DataBlock(get_x = get_x, get_y = get_y)\n",
"dsets = dblock.datasets(df)\n",
"dsets.train[0]"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 44,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"dblock = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),\n",
" get_x = get_x, get_y = get_y)\n",
"dsets = dblock.datasets(df)\n",
"dsets.train[0]"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 48,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"idxs = torch.where(dsets.train[0][1]==1.)[0]\n",
"dsets.train.vocab[idxs]"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 50,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"def splitter(df):\n",
" train = df.index[~df['is_valid']].tolist()\n",
" valid = df.index[df['is_valid']].tolist()\n",
" return train,valid\n",
"\n",
"dblock = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),\n",
" splitter=splitter,\n",
" get_x=get_x, \n",
" get_y=get_y)\n",
"\n",
"dsets = dblock.datasets(df)\n",
"dsets.train[0]"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 52,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
"dblock = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),\n",
" splitter=splitter,\n",
" get_x=get_x, \n",
" get_y=get_y,\n",
" item_tfms = RandomResizedCrop(128, min_scale=0.35))\n",
"dls = dblock.dataloaders(df)"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 54,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
2020-03-19 13:21:55 +00:00
"dls.show_batch(nrows=1, ncols=3)"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 57,
2020-03-06 18:19:03 +00:00
"metadata": {},
"source": [
2020-05-14 12:18:31 +00:00
"### Binary Cross-Entropy"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 59,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
2022-04-24 22:35:15 +00:00
"learn = vision_learner(dls, resnet18)"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 61,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
2020-09-03 22:51:00 +00:00
"x,y = to_cpu(dls.train.one_batch())\n",
2020-03-06 18:19:03 +00:00
"activs = learn.model(x)\n",
"activs.shape"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 63,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"activs[0]"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 66,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
"def binary_cross_entropy(inputs, targets):\n",
" inputs = inputs.sigmoid()\n",
2022-04-25 05:43:24 +00:00
" return -torch.where(targets==1, inputs, 1-inputs).log().mean()"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 70,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"loss_func = nn.BCEWithLogitsLoss()\n",
"loss = loss_func(activs, y)\n",
"loss"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 73,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"def say_hello(name, say_what=\"Hello\"): return f\"{say_what} {name}.\"\n",
"say_hello('Jeremy'),say_hello('Jeremy', 'Ahoy!')"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 75,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"f = partial(say_hello, say_what=\"Bonjour\")\n",
"f(\"Jeremy\"),f(\"Sylvain\")"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 77,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
2022-04-24 22:35:15 +00:00
"learn = vision_learner(dls, resnet50, metrics=partial(accuracy_multi, thresh=0.2))\n",
2020-03-06 18:19:03 +00:00
"learn.fine_tune(3, base_lr=3e-3, freeze_epochs=4)"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 79,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"learn.metrics = partial(accuracy_multi, thresh=0.1)\n",
"learn.validate()"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 81,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"learn.metrics = partial(accuracy_multi, thresh=0.99)\n",
"learn.validate()"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 83,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"preds,targs = learn.get_preds()"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 85,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"accuracy_multi(preds, targs, thresh=0.9, sigmoid=False)"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 87,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"xs = torch.linspace(0.05,0.95,29)\n",
"accs = [accuracy_multi(preds, targs, thresh=i, sigmoid=False) for i in xs]\n",
"plt.plot(xs,accs);"
]
},
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 89,
2020-03-06 18:19:03 +00:00
"metadata": {},
"source": [
"## Regression"
]
},
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 91,
2020-03-06 18:19:03 +00:00
"metadata": {},
"source": [
2020-05-14 12:18:31 +00:00
"### Assemble the Data"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 93,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
"path = untar_data(URLs.BIWI_HEAD_POSE)"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 94,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
"#hide\n",
"Path.BASE_PATH = path"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 96,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
2020-04-28 17:12:59 +00:00
"path.ls().sorted()"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 98,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
2020-04-28 17:12:59 +00:00
"(path/'01').ls().sorted()"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 100,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"img_files = get_image_files(path)\n",
"def img2pose(x): return Path(f'{str(x)[:-7]}pose.txt')\n",
"img2pose(img_files[0])"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 102,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"im = PILImage.create(img_files[0])\n",
"im.shape"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 103,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"im.to_thumb(160)"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 105,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
"cal = np.genfromtxt(path/'01'/'rgb.cal', skip_footer=6)\n",
"def get_ctr(f):\n",
" ctr = np.genfromtxt(img2pose(f), skip_header=3)\n",
" c1 = ctr[0] * cal[0][0]/ctr[2] + cal[0][2]\n",
" c2 = ctr[1] * cal[1][1]/ctr[2] + cal[1][2]\n",
" return tensor([c1,c2])"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 107,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"get_ctr(img_files[0])"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 109,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
"biwi = DataBlock(\n",
" blocks=(ImageBlock, PointBlock),\n",
" get_items=get_image_files,\n",
" get_y=get_ctr,\n",
" splitter=FuncSplitter(lambda o: o.parent.name=='13'),\n",
" batch_tfms=aug_transforms(size=(240,320)), \n",
2020-03-06 18:19:03 +00:00
")"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 112,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"dls = biwi.dataloaders(path)\n",
"dls.show_batch(max_n=9, figsize=(8,6))"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 114,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"xb,yb = dls.one_batch()\n",
"xb.shape,yb.shape"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 117,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"yb[0]"
]
},
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 120,
2020-03-06 18:19:03 +00:00
"metadata": {},
"source": [
2020-05-14 12:18:31 +00:00
"### Training a Model"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 122,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
2022-04-24 22:35:15 +00:00
"learn = vision_learner(dls, resnet18, y_range=(-1,1))"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 124,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": [
"def sigmoid_range(x, lo, hi): return torch.sigmoid(x) * (hi-lo) + lo"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 126,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"plot_function(partial(sigmoid_range,lo=-1,hi=1), min=-4, max=4)"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 128,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"dls.loss_func"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 130,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"learn.lr_find()"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 132,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
2020-04-28 17:12:59 +00:00
"lr = 1e-2\n",
"learn.fine_tune(3, lr)"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 134,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
"math.sqrt(0.0001)"
]
},
{
"cell_type": "code",
2020-09-03 22:58:27 +00:00
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 136,
2020-09-03 22:58:27 +00:00
"metadata": {},
"outputs": [],
2020-03-06 18:19:03 +00:00
"source": [
2020-09-03 22:51:00 +00:00
"learn.show_results(ds_idx=1, nrows=3, figsize=(6,8))"
2020-03-06 18:19:03 +00:00
]
},
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 138,
2020-03-06 18:19:03 +00:00
"metadata": {},
"source": [
"## Conclusion"
]
},
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 140,
2020-03-06 18:19:03 +00:00
"metadata": {},
"source": [
"## Questionnaire"
]
},
2020-03-18 00:34:07 +00:00
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 141,
2020-03-18 00:34:07 +00:00
"metadata": {},
"source": [
2020-05-14 12:18:31 +00:00
"1. How could multi-label classification improve the usability of the bear classifier?\n",
2020-03-18 00:34:07 +00:00
"1. How do we encode the dependent variable in a multi-label classification problem?\n",
"1. How do you access the rows and columns of a DataFrame as if it was a matrix?\n",
"1. How do you get a column by name from a DataFrame?\n",
2020-05-14 12:18:31 +00:00
"1. What is the difference between a `Dataset` and `DataLoader`?\n",
"1. What does a `Datasets` object normally contain?\n",
"1. What does a `DataLoaders` object normally contain?\n",
"1. What does `lambda` do in Python?\n",
"1. What are the methods to customize how the independent and dependent variables are created with the data block API?\n",
2020-03-18 00:34:07 +00:00
"1. Why is softmax not an appropriate output activation function when using a one hot encoded target?\n",
2020-05-14 12:18:31 +00:00
"1. Why is `nll_loss` not an appropriate loss function when using a one-hot-encoded target?\n",
2020-03-18 00:34:07 +00:00
"1. What is the difference between `nn.BCELoss` and `nn.BCEWithLogitsLoss`?\n",
"1. Why can't we use regular accuracy in a multi-label problem?\n",
2020-05-14 12:18:31 +00:00
"1. When is it okay to tune a hyperparameter on the validation set?\n",
"1. How is `y_range` implemented in fastai? (See if you can implement it yourself and test it without peeking!)\n",
2020-03-18 00:34:07 +00:00
"1. What is a regression problem? What loss function should you use for such a problem?\n",
"1. What do you need to do to make sure the fastai library applies the same data augmentation to your input images and your target point coordinates?"
2020-03-18 00:34:07 +00:00
]
},
2020-03-06 18:19:03 +00:00
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 142,
2020-03-06 18:19:03 +00:00
"metadata": {},
"source": [
2020-05-14 12:18:31 +00:00
"### Further Research"
2020-03-06 18:19:03 +00:00
]
},
2020-03-18 00:34:07 +00:00
{
"cell_type": "markdown",
2023-03-29 22:56:24 +00:00
"idx_": 143,
2020-03-18 00:34:07 +00:00
"metadata": {},
"source": [
2020-05-14 12:18:31 +00:00
"1. Read a tutorial about Pandas DataFrames and experiment with a few methods that look interesting to you. See the book's website for recommended tutorials.\n",
"1. Retrain the bear classifier using multi-label classification. See if you can make it work effectively with images that don't contain any bears, including showing that information in the web application. Try an image with two different kinds of bears. Check whether the accuracy on the single-label dataset is impacted using multi-label classification."
2020-03-18 00:34:07 +00:00
]
},
2020-03-06 18:19:03 +00:00
{
"cell_type": "code",
"execution_count": null,
2023-03-29 22:56:24 +00:00
"idx_": 144,
2020-03-06 18:19:03 +00:00
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"jupytext": {
"split_at_heading": true
},
"kernelspec": {
2023-03-29 22:56:24 +00:00
"display_name": "python3",
2020-03-06 18:19:03 +00:00
"language": "python",
"name": "python3"
}
},
"nbformat": 4,
2023-03-29 22:56:24 +00:00
"nbformat_minor": 4,
"path_": "06_multicat.ipynb"
2020-03-06 18:19:03 +00:00
}