fastbook/21_learner.ipynb

1767 lines
172 KiB
Plaintext
Raw Normal View History

2020-02-28 19:44:06 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#hide\n",
"from utils import *"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# fastai Learner from scratch"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This final chapter (other than the conclusion, and the online chapters) is going to look a bit different. We will have far more code, and far less pros than previous chapters. We will introduce new Python keywords and libraries without discussing them. This chapter is meant to be the start of a significant research project for you. You see, we are going to implement all of the key pieces of the fastai and PyTorch APIs from scratch, building on nothing other than the components that we developed in <<chapter_foundations>>! The key goal here is to end up with our own `Learner` class, and some callbacks--enough to be able to train a model on Imagenette, including examples of each of the key techniques we've studied. On the way to building Learner, we will be creating Module, Parameter, and even our own parallel DataLoader… and much more.\n",
"\n",
2020-03-03 14:47:50 +00:00
"The end of chapter questionnaire is particularly important for this chapter. This is where we will be getting you started on the many interesting directions that you could take, using this chapter as your starting out point. What we are really saying is: follow through with this chapter on your computer, not on paper, and do lots of experiments, web searches, and whatever else you need to understand what's going on. You've built up the skills and expertise to do this in the rest of this book, so we think you are going to go great!"
2020-02-28 19:44:06 +00:00
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"path = untar_data(URLs.IMAGENETTE_160)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Path('/home/jhoward/.fastai/data/imagenette2-160/val/n03417042/n03417042_3752.JPEG')"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t = get_image_files(path)\n",
"t[0]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Path('/home/jhoward/.fastai/data/imagenette2-160/val/n03417042/n03417042_3752.JPEG')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from glob import glob\n",
"files = L(glob(f'{path}/**/*.JPEG', recursive=True)).map(Path)\n",
"files[0]"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANUAAACgCAIAAAAUzb6mAADk7ElEQVR4nHT9WbAt6XUeiK31jznu8cznnjsPNQMoACQAkiAlkiJFSe6W2WyJVsshdfSDw9H2ix1uvyjC4SfbHR1+aClshUMd0WoP3W2FJtKkmrMAkAWABApAoepW3aHueOaz5xz/afkhzzl1ScsZO87dO+/euXNnfv+a17fw//R//i+FEEIIxhgAIKIQgnPOOUfE7i8ihhCIKITgnBNCEJExBgDiOE6ShHPeti0AMMa693vvjTHOubquGGPIiDHGGEMkRAQAAEYBERkRNrWp69b7wJks2znnnL2ydefTnQARIWL3LQAQQmhdGcdpFMU+gLPgfXAuGBdca6SUOpJKcGRA3hF5IkIBUkrGeQjgvQc4P2EA0FprqQC6N1P3yx16zjkRNU1T13UIQWsdx7ExhnMuhOiuiXOuOzERfPcyBIeIDAAgAIQQAgKVZZmm8U//1E/9F//Ff76zs3P//v22Cd57a6211ntHRIQAEACDkDJOdJqmaZomeZqmaRRFm7FujbPWAhdKayaVD8E511rjnHG29d4CBQaByEMgNRo45wBASimlVkJqHUVRJFAQUbGqptPp9as3rLUAAADOUVGthmsDAhvISnRtsdwcDtvlMpWxFJoYbwO0CAa4o9BySUQAgTHWoQUwEJGUEgAQ4bP9AESei34Ivq3rqlhZ0whEJCLvfQgBAIQQHYwukde9oQNfCKHDBBFd4rX7q7UGACLq/l6+v7sxHf4QESB0H6mqBogxxhG5d+ScZ4wLyYbJsDtC99kQgjGGMaaU6i7QJS47LOZxLoTqPoIMMCARedsqpYU8f1vwAUIgCgCAgCF053B+HM5ld26CcYAAgUIIHAmRcc5coBB8CCEED0AAFIK31rRtc3kyHYCJgnMeyRvTlmVZlmVVF6ZumqZyzk2mZ/PpDJF+7dd+raqq999//9vf/jbnPE36QgilVJpFURTpKJKKc85v3LjGxPlKDBi6i4yITbGy1rbWegNFUxKh9c45Nxj1leRJnEVaRUoIwRgSQMA4MsZ47xE4AEBAIYTkvGnq4MmZypvWu4YCdV+RRLEQGAm+LFZC+HyQq2BNU5FzjtrgvA/QEjgheJyqSDOuu5vOGGMMOlSEEIQ8hwdj2O0EACJRVCulVJrqLJWcobj8wKX06sDXHfQSTN12ecWJqJOCF8LsM8x1aDbGtG1rrS3qqrtwjMOl/ENEFUchBApIAT0ED0REnohdXOhL6Hdn1R25O9XuZfelnsCZ1rvgPTEmGAqAAABFuRRCKCWk4JyjYCiEYBw8hUtZTgGJCLFhjMVxbNExDkjgvbPOd5ePOHW/yDnnnSMiB4GCy9K0bduyLOu6bpqmLMvValVVVTGfGGPqum6aqmkaY4wzrXMuiiKkoLWOomhtff0LX/iCMWZnZ6fTPJwj55wQvHfe+0BusZoJIYRkKDiRv/y94ziOVJzwjEkhhGScI2eIyDkD8iE4hMAgkHfkrfdWC5DBSwQhGAIHQMZACIrTmAgVElk77KXBnyso17pBnulYx4rSTG2sD08P4PDp075OyBqOuLm5MdrahUifLVYn04nlsrvgHWwYY93ZIiAyuriJgIjd+o8i0etlg16uJOcIohN43bXmnEspuyvS/eDLZdfhoLsT3vtXRZQxhojqur7E3+V+a20Hmksxeala0zQOAYIH7wOivfy6c3l5sV2IKF5VVXdwROze030RegAAZ71zAZELrkKgENxw2Oecc9apaeeddd50eqH7LZxzFOc45hzqagUAQjKlFEe0YJ1zROTBW2vbtj0H07luDc+ePbPWdsvMGNNp57ZtR4OcMRYpPRj0+4MreZ6nUSyEcM4xxrx1aZoioo4j5AwAymrOOeeyM4HgXBeBX1sfCcGFVt2yuRS0YIzgqgNrCMEH6G4zY0CBBKFgTCulJReMISOFvFO+UZRwLkIIARhjwhofAq1WcSzF9vqo28sYWy0KKTnyEA3S8bg/7Gd2OZsAmGpF1omYlBBZogKXFKxpK573iboF0NlsFAICBCICIkQGBAT+Upz5YKxr6gaq0lnTCCnl5Z2+NPuIiHP+F+Rf97xpmktEdnLOWiulbJrmVah1QOGcZ3F+gWNijHFxbr2VdQXEGBMACAyRMwCGAgU7V6Yd0Dt8dKdHhCFQpwQvsa4jxRgTjHuw3tgQAgJHhLoqhRBScs45BE/giQIReWO994iglELEDpScc6VEXdfLeem9b01dVVXTNCGEqiov5FnToa1tW+dcv9+PoijLsq2NcZqmSZLEcayUCtSEELz3EAiAdecJPqxWZdu229vbgVyWJ1LoPOv3+31gmjEmpVRKKaWEOle6VV0Q666zD0CeAhFDQCkFl7KTGjZ4CAGRJONRrKTATOs8i3pZmsRSSc4Bpe/MKsWl8I7quq0bEwI1xjkX0PumlLEUzjmGDDgb97Omqaq6ivNIcVYXK980nIFvXCSkFGJydnI0OTXIeJKMh/0pyUvhxTlHBp3d5b29VKTnEhGRMZb1Yx1JDlQbU9Wrz+RfB4tX7bwOdh0ILs3/S0B0TkZnO3f38hIoHXY72zxw7G48ke+0ZwdNrXUIgQKEQD5Y5wwAAwgoZIe/S0nTHTaKokvcw8VGRNY7xZUQPITAATszDpGXZYnkkASJ7kd5wAAAWdIry7Ku6tVyXtdluVq1bY1I0+l0OpvMFgsfbHdkJrhSKo61lDJJkvWN4XA47Pf7cRxfClFEtNZ2kq9pi9Zg064u3DglpZRccMGA+HhtyBi7d/f17oevr6+PRqPFYrG5tUVEBOfX9/xXs6DjCM+tJ7pUTZzzYLE7sBACETlHIYQUDMknWg56yaiXJbHmGLxprLUREXlAREBmwLHgwTsi0JyBBwDw9lxTITjGGKcQghOSb61v5L346OBguVwuF0UihHUBGgOOmuAt5/041klMxbn4QuSICARAeOEockSOGLynS2CU1bxpOTlblUVTl4Ix1sHo0qXoQPbq80v5BwCdK3ppBV6aZZ05eGkgXkKksaa7vudWAgHnHDFsbe+1bVvXbVU1oW6sNyFAABmc7X5QCAGAOqnJGPPeXqKfMdaZnd3t735rcB5CYMBa0zrnBnnunGvbej5brlarqiqstY4CtmE2m62KhbfG2KauKyCvlHr9zde0gkGu43SY9/tpmmZZlmRpv5dfSvROsDnbWFMvl519qZRScSTzLO7sFmKjEALQpXPGOuNtsVgI5EkaJWk6XywGw954PG7bdrFavqp/gDPGGGciilMpZScXubp4wjkQf/VkQnAIEDxAcJ6HzpMLznME9MgIXGOdcy4QIvoAIYBSETJe1o0H8i5YHxrjrA2EgTHGjVWxioRMsp5QMhBDpgGlDax1ThHPkjyLohbRAJ4tVsD1K3ZapzMDECKc+xIADIAR+S6UIeUAkYIzDHiktOhk0rmLdP4BICKtdXddXo2GdPe7w9+lsu7Ux+VN6kQmAHSCs3sOSIwh51wIJiTjnGd5whiz1gKE0EVGEDjnHM7FML4S9HnVDLj0fM/dII0YyJrWNq23zllbrZZVUU6nU29t01Srqqzr2jlDCIyxO1fvtE3BwfcG+bC/k2XJYNgbDgebm+tnZ2fz1RIYEkDVNsbYVbFcLqZKqTiOoyjSWsdxorUWQly/fvXSPOjM5S6GomIdQujcHCIKPngKwXshxPPnz9fX19/+hbeV1NPZbLlaSalTlaLgl/pXSskER8ThcMjkZ3ExOlciQHT+EhlqyTlnnIFAAGc5hOCoWLRm1TAMEFxwVlBojXPOAbAADJAJpQUXxjMTfOuhcWQ8GBcIkTHMdSIiXdbV8dlcSl62Phusr+94DKSZSLJUxvHSmrquUWqd9cFHF8oXO73nPffehhCklFKJDgmdwyqEaF2JgEAA4ICkmM/n3Tru5PmlAdcd69Lsu0SAlLKLFYWL7VJrv+IBUfeVRCQ4j6JoOp1kWYZAq+Wy38/LVfHxR/eTJKnrtq5ryRlQaNu2l+fOWMZ42zTOuTRNOedN0wRyABC6gCFnRL6q6rquvfd
"text/plain": [
"<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=213x160 at 0x7F471FDA55D0>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"im = Image.open(files[0])\n",
"im"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(#10) ['n03417042','n03445777','n03888257','n03394916','n02979186','n03000684','n03425413','n01440764','n03028079','n02102040']"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"lbls = files.map(Self.parent.name()).unique(); lbls"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'n03417042': 0,\n",
" 'n03445777': 1,\n",
" 'n03888257': 2,\n",
" 'n03394916': 3,\n",
" 'n02979186': 4,\n",
" 'n03000684': 5,\n",
" 'n03425413': 6,\n",
" 'n01440764': 7,\n",
" 'n03028079': 8,\n",
" 'n02102040': 9}"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"v2i = lbls.val2idx(); v2i"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([160, 213, 3])"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"im_t = tensor(im)\n",
"im_t.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Dataset"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"class Dataset:\n",
" def __init__(self, fns): self.fns=fns\n",
" def __len__(self): return len(self.fns)\n",
" def __getitem__(self, i):\n",
" im = Image.open(self.fns[i]).resize((64,64)).convert('RGB')\n",
" y = v2i[self.fns[i].parent.name]\n",
" return tensor(im).float()/255, tensor(y)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(9469, 3925)"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_filt = L(o.parent.parent.name=='train' for o in files)\n",
"train,valid = files[train_filt],files[~train_filt]\n",
"len(train),len(valid)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(torch.Size([64, 64, 3]), tensor(0))"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_ds,valid_ds = Dataset(train),Dataset(valid)\n",
"x,y = train_ds[0]\n",
"x.shape,y"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAHsAAACMCAYAAABcUNbeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO19eayc13Xf737r7MvbV27iIlGkSGuxZclK5CS2ZDuJjNhN6sQx7NRJ6hRokKBIWycp0hZtDBQBCnRH2zRwkzRI09rZvMixK3mRtVk7xU0kH/keH9++zD7zbf3j/O6d4ZM4VOyoBvrmAOSQ33zzfXc7557zO8tVSZJgQLuDrO93Awb0/44Gk72LaDDZu4gGk72LaDDZu4gGk72LaDDZu4i+r5OtlHqHUuoJpVRLKXVNKfXbSim75/tZpdSjSqlFpVSbn59VSs3c4HmWUuqrSqlEKfXRHd/9ulLqG0qpCr+f2fH9Pl5/oz//bse9H1dKnWWbziilfqZPH48qpepKqXDH9UeUUl9QSi0ppRpKqVNKqV9WSqm/zhj+dej7NtlKqVkAXwFwFsBdAD4F4BcB/Iue20IA/wvAjwE4BOAnARwG8Oc3eOw/AdC4wXc+gD/b8fxemgcwuePP3+J3f9TT7g8C+K8A/iOAEwD+M4DPKqXe9wZ9zAD4YwBfe4P3PQjg2wB+AsAxAL8D4DMAfu0G7fveKUmSt+QPgMcA/BcAvwlgCcAGgN8DkOX3/xLAAgCr5zd/D0Bd33OD5z4CIAFQ3HH93QCuABjm9x+9we8f5Pczb6IPfwDg1I5rTwD4wx3X/ieAx97g9/8Nsig+DiB8E+/7NwC+81bNyVvN2R8GMMQB/mkAH0R35d4P4NEkSeKe+78EIAPgbW/0MKXUCICfBfBckiTbPdfHAfx3AB9LkmT9b6LhfNeHAPynnmsegHvYzl76EoB7d2xBH+O9v/LXeG0RwNp32+ab0Vs92VeSJPmVJEnOJEnyJYg4fC+/m4RwfC8t9XxnSCn1P5RSDQCrAKYAPNzznQXhwN9NkuSxv8G2fxxADFlEmkYAODdotw9Z2FBK3QYRy387SZLmm3mZUupBAB8B8G+/l0b3o7d6sl/Y8f+rAMb73J/s+NT0KxBu1/viH/Vw0acBpAD80++hndcRlaRfAPDHSZJs/jV+miilfIhY/40kSV55k++7F8DnAfxWkiQ30ke+d3qr9+wd134DwBz//TiEG3u/PwCZ6Hf1ee4k73m45z0RRJnTfxJeO/Pd7NkAfpj33LvjugcggGwXvdd/DkALgA1gH3/b256o59qn36A91Z3X34o/zt/Mkvmu6FsAflYpZfXs2w9DtOnn+/xOSyOfn58AkN1xz8sAfh2iyX839IsAXkqS5Mnei0mSdJRSzwB4CMBne756GMCTSZJESqmrAI7veN4jEMlzEsCyvqiU+gBECvxmkiS/81229c3T95GzZwFUIGbM7QB+HMA6gM/03P8hAB+DmCZ7AfwIZJHMA8j3effrtHEAeyCD/Ul+/17+f2jHfWMAOgB+6QbP/iCEQ38ZwBEAv8r/v69Pez6OHdo4xKzrAPhnACZ6/oy+ZXPy/Zps/v9eiCnTgig5vw3A7vn+RwE8CWCL91wA8B8AzN7k3W802b/H6zv/fHzHff8IQA1A4SaTd46TdXbnu97kZD92g/bM9XvW9/JH8cUD2gU0wMZ3EQ0mexfRYLJ3EQ0mexfRYLJ3EfUFVVKTo2LHpMfgFicAANmcfNdpbAAA3PQwKtvik3DtAgDA3n8UrdFhAICnBPtwkzSipAIAsDxPXp4pshEKCZddYnXk3dubiGy56I4fkN8BcFtb8puUvMvx+dmpYOn8aQDAxB65P1soIe5UAQDp4ggAoL22gKBRBwAMT+4HAKgtgbrPPfY52FXxQ/gpaRsyaZQyGbnPTcm1chkAMD48gUxe/p2ypJ/loWFsBgKH11YFad2sNrCnZHHcpD3raysAgCunn8TRh/8+AKB6+Kfk3ck8MlV5Z8WVZ1mdBtrXTgEAXv2GIKrzZwV7+sAjH8LKhnh2H/vDf31Df/iAs3cR9eVsNyUopMrmEDvid2h12gAEMgKAyG4jOyar0IZwbJRLoPyY1/iiJIYiKqo8se0d1+J3FmDJgkxsuce1begl6lhyn63kOgA45Hr+F77roDRUNv/Wz0gc+bdny2fiOIAlP/L4nUpJ+4vD40jlRXTlCiIJ3FIJDn0ue2b3yrtH5D1JK0Q7kPaW0iJhvv30U1isCEdHNRmrfKGAw6MibQKOwVB5CACw6PiobgqX5zkuKvLhp2Qssxx31y3Cn5Y+7/mA/PbFMXnm4pqDk3f9KG5GfSfby+UBAHEqhciRF7WDSAaD33WsDoJIRK/jSGMtVYFlcaEgx09AEb9RHGzFSVSx0nNtqFWtwsvKM1xG6jhKwVEU7ZxlS3+HBLm0iFKfA5RyLESR3O/pVWHZSPgyn5OduPK7qf2HMTss4ltPdttNw7ddAMC1hXkAwKXnRZx2tqsol0oAgHuOnwQArG9uImBfUmlpfyblYXxY7ktaspWtbYo4L5fHUVm6Iu/nNhe5GfgWtzqOkRUoZFISSZUbGZPfjsk2FAZruDz3MkfuR3AjGojxXUR9ObvREOXA9gLky7LSbYuKw+pVAEDYrsC1hNsjtAAAXrGIdGFU7nco4pMESUKOTnx+2nxmDJscalF4N2p1eFTkPKuHs7nSXX46tnznxt2tIE3O9pRCTI5OaUlg21DkaF8/Iy1tnDx0O7ZWRVm7dEG4uB53uXZxWZTSelskWSaVRRJQVKelrb5jo0POtmN5Zy7j48H73w4AOHdKuP3Rx58CAIyP78G5OeFsr74IAIhLh6Es2SjTHA+lQiSJjHPsyXPLJYnxCNZW8b+/xhiL3/oUbkQDzt5F1JezHXKIQoA4Ei5PItl4XUf2sXSUR9imSRXLyutsbsMabvMZAQAg5SRIuGlHXKE2OdFWCs4Ozk45Dlx+72kFDcr8eydne3HXfPP46TsWwlA/g893bKPVZbRpRx2i02xifklMLyctukY5n0LOld/mfOlzJaD+0mxjfFjMsff84DsAAE898yQurIuC5lFy5TM+sr4M9UhRnht0ZFyGciX4oZiMqIg08YdOIFDbpl8AEFshLN3XrMuxpY4Uu1BbNw9NGHD2LqK+yyFsi6GuXAvNhqwmn/uo1oaRKiCOZZUGbeHmVivAaIaathJOScIOXF++tyH3gxq7bXmmIbbqcq7mYo+cZ8Eye7aj9/EeDtfXXHKs59iw2E6tjduOA8tP8RqlSCKfLddFOkfOU9LfoFHF/ScPAQBW5y8BAC5ekz3Wt3yMU3sfzcu+PzFcRMA9tZAWE2l0KANeQiGTNn2R8cygnJZ/V1fm5BkHHYSUdHZHj6NvrJgkjPkM2ddfPfUKllfmcTPqz/tUrsJmCy5ENCkqM86YdAQJENRk8OKUKC7+5ChiRQUtqAEAGuESfCWvS8k4wlNjbLQHZWsxnmLnbFgOO+zKc11E8NhRT8lC8TlonuoqaDZtdduxjbjPQraOwPXh0fr3OaBF2uUnb7kFLz8vqNRmS55RcDuYGhMbemJY3jkzJYrR1MwMbpkUpNB1pVM538cwzb3hnDBG3gPWFmUyFhdECXNc+W6z3UE6L8pvsHBW+m5vIxPSdNUWY6KM6RoSz7hw8QwA4Et/9Xl4Q9K/fjQQ47uI+oMqeeHeqFNBVBUQIEnkJ7WmKGXFbAo2laBUXla3PVyCa4t4S6pirpRSCSxKbwSCTbtZiiPbASxyI8WnYyu4XMEpinsXLXi2PMShaaI5xAEQ1AlU5AXASMdAQs7OkC0algNLK3JkmzSRvCPTIyhpqUMF9MSth5BLi7QpZ+TaZFn6dmBmFBlKjEtnXpK2Jk2UqNjmIEptWuXwygvPAQC2tuVaIS/SYqVSw8joFABgde48ACAOVpF3DgIAWhCppiIFW8kYdbjt6I5MjM9iM67gZjTg7F1EfTnbAnHqXA4O97VOWzgqqMkKrbc7SHuidGhzwm+2kCnJXt2KhLOd9VWojnB
"text/plain": [
"<Figure size 144x144 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"show_image(x, title=lbls[y]);"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"def collate(idxs, ds): \n",
" xb,yb = zip(*[ds[i] for i in idxs])\n",
" return torch.stack(xb),torch.stack(yb)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(torch.Size([2, 64, 64, 3]), tensor([0, 0]))"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x,y = collate([1,2], train_ds)\n",
"x.shape,y"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"class DataLoader:\n",
" def __init__(self, ds, bs=128, shuffle=False, n_workers=1):\n",
" self.ds,self.bs,self.shuffle,self.n_workers = ds,bs,shuffle,n_workers\n",
"\n",
" def __len__(self): return (len(self.ds)-1)//self.bs+1\n",
"\n",
" def __iter__(self):\n",
" idxs = L.range(self.ds)\n",
" if self.shuffle: idxs = idxs.shuffle()\n",
" chunks = [idxs[n:n+self.bs] for n in range(0, len(self.ds), self.bs)]\n",
" with ProcessPoolExecutor(self.n_workers) as ex:\n",
" yield from ex.map(collate, chunks, ds=self.ds)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(torch.Size([128, 64, 64, 3]), torch.Size([128]), 74)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"n_workers = min(16, defaults.cpus)\n",
"train_dl = DataLoader(train_ds, bs=128, shuffle=True, n_workers=n_workers)\n",
"valid_dl = DataLoader(valid_ds, bs=256, shuffle=False, n_workers=n_workers)\n",
"xb,yb = first(train_dl)\n",
"xb.shape,yb.shape,len(train_dl)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[tensor([0.4544, 0.4453, 0.4141]), tensor([0.2812, 0.2766, 0.2981])]"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"stats = [xb.mean((0,1,2)),xb.std((0,1,2))]\n",
"stats"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"class Normalize:\n",
" def __init__(self, stats): self.stats=stats\n",
" def __call__(self, x):\n",
" if x.device != self.stats[0].device:\n",
" self.stats = to_device(self.stats, x.device)\n",
" return (x-self.stats[0])/self.stats[1]"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"norm = Normalize(stats)\n",
"def tfm_x(x): return norm(x).permute((0,3,1,2))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(tensor([0.3732, 0.4907, 0.5633]), tensor([1.0212, 1.0311, 1.0131]))"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t = tfm_x(x)\n",
"t.mean((0,2,3)),t.std((0,2,3))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Module and Parameter"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"class Parameter_(Tensor):\n",
" def __init__(self, *args, **kwargs): self.requires_grad_()\n",
"def Parameter(x): return Tensor._make_subclass(Parameter_, x, True)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"class Module:\n",
" def __init__(self):\n",
" self.hook,self.params,self.children,self._training = None,[],[],False\n",
" \n",
" def register_parameters(self, *ps): self.params += ps\n",
" def register_modules (self, *ms): self.children += ms\n",
" \n",
" @property\n",
" def training(self): return self._training\n",
" @training.setter\n",
" def training(self,v):\n",
" self._training = v\n",
" for m in self.children: m.training=v\n",
" \n",
" def parameters(self):\n",
" res = self.params\n",
" res += sum([m.parameters() for m in self.children], [])\n",
" return res\n",
"\n",
" def __setattr__(self,k,v):\n",
" super().__setattr__(k,v)\n",
" if isinstance(v,Parameter_): self.register_parameters(v)\n",
" if isinstance(v,Module): self.register_modules(v)\n",
" \n",
" def __call__(self, *args, **kwargs):\n",
" res = self.forward(*args, **kwargs)\n",
" if self.hook is not None: self.hook(res, args)\n",
" return res\n",
" \n",
" def cuda(self):\n",
" for p in self.parameters(): p.data = p.data.cuda()"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"act_func = F.relu"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"class ConvLayer(Module):\n",
" def __init__(self, ni, nf, stride=1, bias=True, act=True):\n",
" super().__init__()\n",
" self.w = Parameter(torch.zeros(nf,ni,3,3))\n",
" self.b = Parameter(torch.zeros(nf)) if bias else None\n",
" self.act,self.stride = act,stride\n",
" init = nn.init.kaiming_normal_ if act else nn.init.xavier_normal_\n",
" init(self.w)\n",
" \n",
" def forward(self, x):\n",
" x = F.conv2d(x, self.w, self.b, stride=self.stride, padding=1)\n",
" if self.act: x = act_func(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l = ConvLayer(3, 4)\n",
"len(l.parameters())"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([128, 4, 64, 64])"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"xbt = tfm_x(xb)\n",
"r = l(xbt)\n",
"r.shape"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"class Linear(Module):\n",
" def __init__(self, ni, nf):\n",
" super().__init__()\n",
" self.w = Parameter(torch.zeros(nf,ni))\n",
" self.b = Parameter(torch.zeros(nf))\n",
" nn.init.xavier_normal_(self.w)\n",
" \n",
" def forward(self, x): return x@self.w.t() + self.b"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"torch.Size([3, 2])"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"l = Linear(4,2)\n",
"r = l(torch.ones(3,4))\n",
"r.shape"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"class T(Module):\n",
" def __init__(self):\n",
" super().__init__()\n",
" self.c,self.l = ConvLayer(3,4),Linear(4,2)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t = T()\n",
"len(t.parameters())"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"device(type='cuda', index=5)"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t.cuda()\n",
"t.l.w.device"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Simple CNN"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"class Sequential(Module):\n",
" def __init__(self, *layers):\n",
" super().__init__()\n",
" self.layers = layers\n",
" self.register_modules(*layers)\n",
"\n",
" def forward(self, x):\n",
" for l in self.layers: x = l(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"class AdaptivePool(Module):\n",
" def forward(self, x): return x.mean((2,3))"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"def simple_cnn():\n",
" return Sequential(\n",
" ConvLayer(3 ,16 ,stride=2), #32\n",
" ConvLayer(16,32 ,stride=2), #16\n",
" ConvLayer(32,64 ,stride=2), # 8\n",
" ConvLayer(64,128,stride=2), # 4\n",
" AdaptivePool(),\n",
" Linear(128, 10)\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"m = simple_cnn()\n",
"len(m.parameters())"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"def print_stats(outp, inp): print (outp.mean().item(),outp.std().item())\n",
"for i in range(4): m.layers[i].hook = print_stats"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.41993722319602966 0.6984175443649292\n",
"0.31132981181144714 0.5268176794052124\n",
"0.30335918068885803 0.547913670539856\n",
"0.32568952441215515 0.5254442095756531\n"
]
},
{
"data": {
"text/plain": [
"torch.Size([128, 10])"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"r = m(xbt)\n",
"r.shape"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loss"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"def nll(input, target): return -input[range(target.shape[0]), target].mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And check the kind of result it gives (since our model was trained for two epoch, this should be pretty low):"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"def log_softmax(x): return (x.exp()/(x.exp().sum(-1,keepdim=True))).log()"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor(-2.7753, grad_fn=<SelectBackward>)"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sm = log_softmax(r); sm[0][0]"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor(2.5293, grad_fn=<NegBackward>)"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loss = nll(sm, yb)\n",
"loss"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that the formula \n",
"\n",
"$$\\log \\left ( \\frac{a}{b} \\right ) = \\log(a) - \\log(b)$$ \n",
"\n",
"gives a simplification when we compute the log softmax, which was previously defined as `(x.exp()/(x.exp().sum(-1,keepdim=True))).log()`"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor(-2.7753, grad_fn=<SelectBackward>)"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def log_softmax(x): return x - x.exp().sum(-1,keepdim=True).log()\n",
"sm = log_softmax(r); sm[0][0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, there is a way to compute the log of the sum of exponentials in a more stable way, called the [LogSumExp trick](https://en.wikipedia.org/wiki/LogSumExp). The idea is to use the following formula:\n",
"\n",
"$$\\log \\left ( \\sum_{j=1}^{n} e^{x_{j}} \\right ) = \\log \\left ( e^{a} \\sum_{j=1}^{n} e^{x_{j}-a} \\right ) = a + \\log \\left ( \\sum_{j=1}^{n} e^{x_{j}-a} \\right )$$\n",
"\n",
"where a is the maximum of the $x_{j}$.\n",
"\n",
"\n",
"Here's the same thing in code:"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor(False)"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = torch.rand(5)\n",
"a = x.max()\n",
"x.exp().sum().log() == a + (x-a).exp().sum().log()"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"def logsumexp(x):\n",
" m = x.max(-1)[0]\n",
" return m + (x-m[:,None]).exp().sum(-1).log()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor(2.3158, grad_fn=<SelectBackward>)"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"logsumexp(r)[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"So we can use it for our `log_softmax` function."
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"def log_softmax(x): return x - x.logsumexp(-1,keepdim=True)"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor(-2.7753, grad_fn=<SelectBackward>)"
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sm = log_softmax(r); sm[0][0]"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"def cross_entropy(preds, yb): return nll(log_softmax(preds), yb).mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Learner"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"class SGD:\n",
" def __init__(self, params, lr, wd=0.): store_attr(self, 'params,lr,wd')\n",
" def step(self):\n",
" for p in self.params:\n",
" p.data -= (p.grad.data + p.data*self.wd) * self.lr\n",
" p.grad.data.zero_()"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"class DataLoaders:\n",
" def __init__(self, *dls): self.train,self.valid = dls"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"dls = DataLoaders(train_dl,valid_dl)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"class Learner:\n",
" def __init__(self, model, dls, loss_func, lr, cbs, opt_func=SGD):\n",
" store_attr(self, 'model,dls,loss_func,lr,cbs,opt_func')\n",
" for cb in cbs: cb.learner = self\n",
"\n",
" def one_batch(self):\n",
" self('before_batch')\n",
" xb,yb = self.batch\n",
" self.preds = self.model(xb)\n",
" self.loss = self.loss_func(self.preds, yb)\n",
" if self.model.training:\n",
" self.loss.backward()\n",
" self.opt.step()\n",
" self('after_batch')\n",
"\n",
" def one_epoch(self, train):\n",
" self.model.training = train\n",
" self('before_epoch')\n",
" dl = self.dls.train if train else self.dls.valid\n",
" for self.num,self.batch in enumerate(progress_bar(dl, leave=False)):\n",
" self.one_batch()\n",
" self('after_epoch')\n",
" \n",
" def fit(self, n_epochs):\n",
" self('before_fit')\n",
" self.opt = self.opt_func(self.model.parameters(), self.lr)\n",
" self.n_epochs = n_epochs\n",
" try:\n",
" for self.epoch in range(n_epochs):\n",
" self.one_epoch(True)\n",
" self.one_epoch(False)\n",
" except CancelFitException: pass\n",
" self('after_fit')\n",
" \n",
" def __call__(self,name):\n",
" for cb in self.cbs: getattr(cb,name,noop)()"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"class Callback(GetAttr): _default='learner'"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"class TrackResults(Callback):\n",
" def before_epoch(self): self.accs,self.losses,self.ns = [],[],[]\n",
" \n",
" def after_epoch(self):\n",
" n = sum(self.ns)\n",
" print(self.epoch, self.model.training,\n",
" sum(self.losses).item()/n, sum(self.accs).item()/n)\n",
" \n",
" def after_batch(self):\n",
" xb,yb = self.batch\n",
" acc = (self.preds.argmax(dim=1)==yb).float().sum()\n",
" self.accs.append(acc)\n",
" n = len(xb)\n",
" self.losses.append(self.loss*n)\n",
" self.ns.append(n)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"class SetupLearnerCB(Callback):\n",
" def before_batch(self):\n",
" xb,yb = to_device(self.batch)\n",
" self.learner.batch = tfm_x(xb),yb\n",
"\n",
" def before_fit(self): self.model.cuda()"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {},
"outputs": [],
"source": [
"cbs = [SetupLearnerCB(),TrackResults()]"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"learn = Learner(simple_cnn(), dls, cross_entropy, lr=0.1, cbs=cbs)"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 True 2.1446147873983525 0.21987538282817615\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 False 2.0508458150875795 0.26343949044585985\n"
]
}
],
"source": [
"learn.fit(1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Annealing"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"class LRFinder(Callback):\n",
" def before_fit(self):\n",
" self.losses,self.lrs = [],[]\n",
" self.learner.lr = 1e-6\n",
" \n",
" def before_batch(self):\n",
" if not self.model.training: return\n",
" self.opt.lr *= 1.2\n",
"\n",
" def after_batch(self):\n",
" if not self.model.training: return\n",
" if self.opt.lr>10 or torch.isnan(self.loss): raise CancelFitException\n",
" self.losses.append(self.loss.item())\n",
" self.lrs.append(self.opt.lr)"
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"lrfind = LRFinder()"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"learn = Learner(simple_cnn(), dls, cross_entropy, lr=0.1, cbs=cbs+[lrfind])"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 True 2.490109584565424 0.10507973386841271"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 False 2.332222830414013 0.09859872611464968"
]
},
{
"data": {
"text/html": [
"\n",
" <div>\n",
" <style>\n",
" /* Turns off some styling */\n",
" progress {\n",
" /* gets rid of default border in Firefox and Opera. */\n",
" border: none;\n",
" /* Needs to be in here for Safari polyfill so background images work as expected. */\n",
" background-size: auto;\n",
" }\n",
" .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n",
" background: #F44336;\n",
" }\n",
" </style>\n",
" <progress value='14' class='' max='74', style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
" 18.92% [14/74 00:02<00:12]\n",
" </div>\n",
" "
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"learn.fit(2)"
]
},
{
"cell_type": "code",
"execution_count": 113,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD/CAYAAAD2Qb01AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3ic1ZX48e8ZjXqvtixbkiu2McGN4tBMC21TCCSB1N0UErIkm+wmYTdZFnaXDWx+yW42jQSWJCQhbAiQAAmQhGIMGAw2tsG9SnJX79LU8/tjikbSjDTqI8/5PM88jN736tUdWZy5c95z7xVVxRhjTPJwTHUHjDHGTC4L/MYYk2Qs8BtjTJKxwG+MMUnGAr8xxiQZC/zGGJNknFPdgXiUlJRodXX1VHfDGGOmlc2bNzeqaunA49Mi8FdXV7Np06ap7oYxxkwrIlIb7bileowxJslY4DfGmCRjgd8YY5KMBX5jjEkyFviNMSbJWOA3xpgkY4HfGGMSUEevhxNtvfj94790vgV+Y4xJQL96rY5z73oOt88/7te2wG+MMQnIEwz4qSnjH6Yt8BtjTALy+PykOIQUh4z7tS3wG2NMAnL7/DgnIOiDBX5jjElIHq+SNgFpHrDAb4wxCcnr95PqtMBvjDFJw+Pzk5piqR5jjEkabq9OSEUPWOA3xpiE5PH5pzbHLyK/EpHjItIuIntF5NMx2v1YRDojHi4R6Yg4v05EeiPO7xmvF2KMMacSj8+Pc4pTPXcB1aqaB7wHuFNEVg1spKqfU9Wc0AN4CPjtgGa3RLQ5bUy9N8aYU1Qgxz+FI35V3aGqrtCXwcf8ob5HRLKB64AHxtRDY4xJQh5fAuT4ReRHItIN7AaOA08N8y3XAQ3A+gHH7xKRRhF5RUTWjqSzxhiTLKY8xw+gqp8HcoELgMcA19DfwSeAX6hq5NJytwLzgArgXuBJEYn6yUFEbhKRTSKyqaGhId5uGmPMKcHj85PqTIByTlX1qerLwGzg5ljtRGQOcBHwiwHfv1FVO1TVpaoPAK8AV8f4Wfeq6mpVXV1aWjqSbhpjzLTnToRUzwBOhs7xfxzYoKoHh7mOAhPzlmaMMdOYx+vH6ZiiwC8iZSJyg4jkiEiKiFwB3Ag8P8S3fRz4+YDrFIjIFSKSISJOEfkIcCHwpzH03xhjTkken5+0CUr1OONoowTSOj8m8EZRC3xJVR8XkUpgJ7BUVesARGQNgVTQwDLOVOBOYDHgI3CT+H2qarX8xhgzgNc/cameYQO/qjYQyNdHO1cH5Aw49iqQHeM6Z42um8YYk1zc3imu4zfGGDO5pnwClzHGmMkVqONPgHJOY4wxk8PjU5w24jfGmOThtlSPMcYkF6+leowxJnn4/IpfsRG/McYkC4/PD2B77hpjTLJwhwK/jfiNMSY5eLyhwG85fmOMSQoeX2A1exvxG2NMkvBYqscYY5JLX+C3VI8xxiSFUKpnyrdeNMYYMzks1WOMMUkmVM7ptFSPMcYkh1A5p6V6jDEmSXj9wXJOm7lrjDHJwWbuGmNMkkmImbsi8isROS4i7SKyV0Q+HaPdX4uIT0Q6Ix5rI85Xi8gLItItIrtF5LJxeh3GGHPKSJSZu3cB1aqaB7wHuFNEVsVo+6qq5kQ81kWcewjYAhQD3wAeEZHSUfbdGGNOSQlRzqmqO1TVFfoy+Jg/kh8kIouAlcDtqtqjqo8CbwPXjeQ6xhhzqnMnysxdEfmRiHQDu4HjwFMxmq4QkcZgSug2EXEGj58OHFTVjoi224LHjTHGBIVG/FNezqmqnwdygQuAxwBXlGbrgWVAGYGR/I3AV4PncoC2Ae3bgtccRERuEpFNIrKpoaEh3m4aY8y0502QHD8AqupT1ZeB2cDNUc4fVNVDqupX1beBfwOuD57uBPIGfEse0EEUqnqvqq5W1dWlpXYbwBiTPBJ1By4n8eX4FQglqXYA80QkcoR/ZvC4McaYoPCSDY4pyvGLSJmI3CAiOSKSIiJXEEjhPB+l7VUiMiP4fDFwG/A4gKruBbYCt4tIhohcC7wDeHT8Xo4xxkx/Hu/Up3qUQFrnCNACfBv4kqo+LiKVwVr9ymDbS4G3RKSLwM3fx4BvRlzrBmB18Dp3A9erqiXwjTEmgsfnJ8UhpEzQiN85XINgYL4oxrk6AjdtQ19/BfjKENeqAdaOtJPGGJNMPD7/hJVygi3ZYIwxCcfj0wlL84AFfmOMSTgen3/CavjBAr8xxiQcj88/YZuwgAV+Y4xJOG6f31I9xhiTTDw+tVSPMcYkE4/XRvzGGJNUvH4/qU7L8RtjTNJwWzmnMcYkF4/XT6rDAr8xxiQNj89SPcYYk1Q8Vs5pjDHJxXL8xhiTZLy2ZIMxxiQXW53TGGOSjMenOG3Eb4wxycPW6jHGmCQTWJbZUj3GGJM0bK0eY4xJMh6/kuq0wG+MMUlBVRNjApeI/EpEjotIu4jsFZFPx2j3CRHZHGx3RES+JSLOiPPrRKRXRDqDjz3j9UKMMeZU4PMrqpDqmPoc/11AtarmAe8B7hSRVVHaZQFfAkqAc4BLga8MaHOLquYEH6eNst/GGHNK8vgUYEJTPc7hm4Cq7oj8MviYD2we0O6eiC+PisiDwMVj7aQxxiQLt88PMPWpHgAR+ZGIdAO7gePAU3F824XAjgHH7hKRRhF5RUTWDvHzbhKRTSKyqaGhId5uGmPMtOYJBv6EKOdU1c8DucAFwGOAa6j2IvI3wGrg2xGHbwXmARXAvcCTIjI/xs+7V1VXq+rq0tLSeLtpjDHTmjeU6kmEET+AqvpU9WVgNnBzrHYi8j7gbuAqVW2M+P6Nqtqhqi5VfQB4Bbh6dF03xphTj2cSUj1x5fhjfF/UkbqIXAncB1yjqm8Pcx0FJu7zjDHGTDOhHL9zKlM9IlImIjeISI6IpIjIFcCNwPNR2l4CPAhcp6qvDzhXICJXiEiGiDhF5CME7gH8aXxeijHGTH99Of6pTfUogbTOEaCFQM7+S6r6uIhUBuvxK4NtbwPygaciavWfDp5LBe4EGoBG4AvA+1TVavmNMSbI4534HP+wqR5VbQAuinGuDsiJ+Dpm6WbwOmeNoo/GGJM0wuWctmSDMcYkB2/45m4ClHMaY4yZeKGZu1Od4zfGGDNJPOGqHgv8xhiTFNyW6jHGmOSSKOWcxhhjJslkzNy1wD/O9pzo4J51B6a6G8aYaWoylmW2wD/OHttyhP98Zjfdbu9Ud8UYMw15LMc//TR1ugFo6fZMcU+MMdORxxsM/A4b8U8bTZ2B1aqbg28AxhgzEpbqmYaaugIBv7nbAr8xZuSsnHMaCqd6uizwG2NGLpzjt1TP9KCqNHUFUz0W+I0xo+D1KU6H4HDYiH9a6Hb76PUE3q1bkjzVs7m2hdt+vx1VnequGDOteHz+Ca3hBwv846op4oZuso/4n9x2jF++Vhu+52GMiY/b55/Q3bfAAv+4auzq238+2Uf8h5u7Aaht6p7inhgzvXh8/gldrgEs8I+r0Ig/MzVl2oz43V4/9e29437d2mDgr2vuGvdrG3Mq83jVUj3TSaiGf0FZzrQJ/A9sqOGCb71AbdP4BWi/X8Mj/rqmnnG7rjHJwOPzk+q0VM+0EcpnLyzLoblreszcPdjYhcvr5+6nd4/bNRs6XbiCsw9rbcRvzIh4/Aky4heRX4nIcRFpF5G9IvLpIdp+WUROiEibiPxURNIjzlWLyAsi0i0iu0XksvF4EYmiqdNNTrqTmfkZtHS7p0VFSyjN8/T2E2w82DQu1wzl9Z0Ooc5y/MaMiMebODn+u4BqVc0D3gPcKSKrBjYSkSuAfwQuBaqBecC/RjR5CNgCFAPfAB4RkdJR9z7BNHW5KM5Joyg7DZ9fae9N/IXaTnb0smZeMbPyM/j3P+7E7x/7m1VdMM2zsrIw/NwYEx9PolT1qOoOVQ2VrGjwMT9K008A9wfbtwD/Dvw1gIgsAlYCt6tqj6o+CrwNXDe2l5A4mjrdFGenUZiVBkyP2bsn211UFWdx61WL2X60nUffPDLma9Y1d+MQWDO/mPoOFz1u3zj
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(lrfind.lrs[:-2],lrfind.losses[:-2])\n",
"plt.xscale('log')"
]
},
{
"cell_type": "code",
"execution_count": 136,
"metadata": {},
"outputs": [],
"source": [
"class OneCycle(Callback):\n",
" def __init__(self, base_lr): self.base_lr = base_lr\n",
" def before_fit(self): self.lrs = []\n",
"\n",
" def before_batch(self):\n",
" if not self.model.training: return\n",
" n = len(self.dls.train)\n",
" bn = self.epoch*n + self.num\n",
" mn = self.n_epochs*n\n",
" pct = bn/mn\n",
" pct_start,div_start = 0.25,10\n",
" if pct<pct_start:\n",
" pct /= pct_start\n",
" lr = (1-pct)*self.base_lr/div_start + pct*self.base_lr\n",
" else:\n",
" pct = (pct-pct_start)/(1-pct_start)\n",
" lr = (1-pct)*self.base_lr\n",
" self.opt.lr = lr\n",
" self.lrs.append(lr)"
]
},
{
"cell_type": "code",
"execution_count": 137,
"metadata": {},
"outputs": [],
"source": [
"onecyc = OneCycle(0.1)"
]
},
{
"cell_type": "code",
"execution_count": 138,
"metadata": {},
"outputs": [],
"source": [
"learn = Learner(simple_cnn(), dls, cross_entropy, lr=0.1, cbs=cbs+[onecyc])"
]
},
{
"cell_type": "code",
"execution_count": 139,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 True 2.2302985812255782 0.17985003696272045\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 False 2.197772939888535 0.1819108280254777\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"1 True 2.0975320783609672 0.24215862287464357\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"1 False 1.9934868879378982 0.3026751592356688\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"2 True 1.9510114006890906 0.3118597528778118\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"2 False 1.8667540804140128 0.35337579617834397\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"3 True 1.8408451674543247 0.3651916781075087\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"3 False 1.7804740993232484 0.38471337579617837\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"4 True 1.7385770342697222 0.40162635970007393\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"4 False 1.7134963425557326 0.4206369426751592\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"5 True 1.6633978104538494 0.4345759847924807\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"5 False 1.7293920431926753 0.39923566878980893\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"6 True 1.5818110619191572 0.46477980779385364\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"6 False 1.6024532245222929 0.4565605095541401\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"7 True 1.5281916030269829 0.4891752032949625\n"
]
},
{
"data": {
"text/html": [],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"7 False 1.5787282294984077 0.47312101910828025\n"
]
}
],
"source": [
"learn.fit(8)"
]
},
{
"cell_type": "code",
"execution_count": 140,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD7CAYAAACCEpQdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXiU9bn/8fednSQECIQdEtkRZI0soa7VVq2nsiqCLG4o2J7T6q+2PdaeVtu6tPacagHBWtkUcAH3ra1LlbAFWaOIggn7DoGEJZB8f3/MxI7pABPIZLbP67rm0jzPk8n9JTM3D8/c8xlzziEiIrElLtQFiIhI3VPzFxGJQWr+IiIxSM1fRCQGqfmLiMSghFAXEIgmTZq4nJycUJchIhJRVqxYsdc5l+VvX0Q0/5ycHAoKCkJdhohIRDGz4lPt02UfEZEYpOYvIhKD1PxFRGKQmr+ISAxS8xcRiUEBNX8zyzSzhWZWZmbFZjbqFMddZmbvm1mJmRX52Z/j3X/EzNab2RXnWL+IiJyFQM/8JwPlQDNgNDDVzLr5Oa4M+Cvwk1Pcz1xgJdAYuA940cz8zqCKiEjwnLH5m1kaMAy43zlX6pz7GHgVGFP9WOfcMufcbGCTn/vpBPQB/sc5d9Q59xKw1nvfEga+3F3K2+t2hroMEakDgZz5dwIqnHMbfLatBvyd+Z9ON2CTc+5wIPdjZhPMrMDMCvbs2VPDHyVn457nV3HnnBX86tVCKir1OQ8i0SyQ5p8OlFTbVgLUr+HPqtH9OOemO+dynXO5WVm6MhRsKzcfYPXWEnq2bsCM/CLumF3AkfKToS5LRIIkkOZfCmRU25YBHPZzbF3cjwTBjPwi6icn8NztA/j197vx3vrd3DBtCbsPHwt1aSISBIE0/w1Agpl19NnWEyis4c8qBNqZme+Z/tncj9Sy3YeO8ebaHYzIbUNacgLj8nKYPiaXL3eXMmRyPht26e9nkWhzxubvnCsDFgAPmFmamQ0CrgNmVz/WzOLMLAVI9HxpKWaW5L2fDcAq4H+824cAPYCXam85cjaeXbqZk5WOsQOzv952xfnNeP6OgZRXVDJsaj6LvtwbwgpFpLYFOuo5CagH7MYzrjnROVdoZheZWanPcRcDR4E3gbbe/3/XZ/9IIBc4ADwMDHfO6dXcECo/WcmzSzdzWeem5DRJ+8a+C1o3YOGkPFo0SGHcX5fxQsGWEFUpIrUtoEhn59x+YLCf7R/heSG36usPADvN/RQBl9awRgmiN9fuYG/pccbl5fjd37pRKi9OzGPinBX85MU1bNl/hB9f2QmzU/6aRSQCKN4hxs3IL6JdVhoXdWhyymMyUhJ5Znw/RvRtzePvfcndz6/m+MmKOqxSRGqbmn8MW7XlIKu2HGTcwBzi4k5/Jp+UEMejw3twz5WdWLhyG+P+uoySIyfqqFIRqW1q/jFsZn4R6ckJDOvbOqDjzYwffrsj/3dDLz4pPsjQqYvYsv9IkKsUkWBQ849Ruw8f4/U12xnetzXpyTX7NM/BvVsx69Z+7C0tZ8iURazacjBIVYpIsKj5x6i5S7dwouKb4501MaBdY16amEe9pHhGTl+sTCCRCKPmH4M8453FXNo5i3ZZ6Wf+hlPo0DSdhZMG0aV5BhOfXcFfPtqEc8oEEokEav4x6K11O9h9+NTjnTXRJD2ZubcP4LvnN+c3b3ymUDiRCKHmH4Nm5hdxXpM0LulYO4F59ZLimTK6D7dfdB4zFxcrFE4kAqj5x5g1Ww/yyeaDjB2YfcbxzpqIizPu+975PHCdTyjcIYXCiYQrNf8YMyO/iLSkeIYHON5ZU2MH5vDUWG8o3BSFwomEKzX/GLK39Divr97B8L6tqZ+SGLSf8+2uPqFwU/L5+AuFwomEGzX/GDJ36WbKKyoZWwsv9J7JBa0b8PJdg2jRMIXxzyzjeYXCiYQVNf8YcaKikjlLi7m4Uxbtz2G8syZaNazHixPzGNCuMfe+uIbH3v1co6AiYULNP0a8vW4nuw4dZ3ze2b2p62xlpCTyzM0Xcn1ua55470t+PH+VQuFEwkDN3tcvEWtmfhHZjVO5tFPTOv/ZifFxPDKsB20zU/nDuxvYUXKM6WNyaZAavNcdROT0dOYfA9ZtK6Gg+ABjA0jvDBYz4weXd+RPI3uxcvNBhkxdxOZ9CoUTCRU1/xgwI7+I1KR4RuQGZ7yzJq7r1YrZt/ZjnzcUbuXmA6EuSSQmqflHuX2lx3l19XaG9WlNRhDHO2uif7vGLJiUR1pyAiOnL+HtdTtCXZJIzFHzj3Lzlm+h/GQl4+r4hd4zaZ+VzoJJeXRtkcHEZz9RKJxIHVPzj2InKiqZs6SYizo2oUPT+qEu5980SU9m3oQBXNXNEwr3P68WcrKiMtRlicQENf8o9m7hLnaUHGPcwJxQl3JKKYnxTB7VhwkXt2PW4mLumL2CsuMKhRMJNjX/KDYzv4i2malc1qXuxztrIi7O+O9ruvLgdd14//Pd3DB9sULhRIJMzT9KFW4vYVnRfsYOzCY+ROOdNTVmYA5/GZfLpj1lDJ68iM93KhROJFjU/KPUzPwi6iXGMyK3TahLqZHLu3hC4U5WOoZPVSicSLCo+Ueh/WXlvLJqO0P7tKJBvfAY76yJ7q08oXAtG9bzhMItVyicSG1T849C85Zv5vjJylr5mMZQadmwHi9MHMjA9o259yWFwonUNjX/KHOyopI5i4sZ1KExnZqF33hnTWSkJPLX8RdyQ24bnnjvS36kUDiRWqPmH2X+9ukutof5eGdNJMbH8fCwC/jJdzvzyqrtjHl6GQePlIe6LJGIp+YfZWbkF9G6UT2+3bVZqEupNWbGXZd14E8je7Fq80GGTs1XKJzIOVLzjyKf7TjE0q8ia7yzJq7r1Yo5t/X/OhTuE4XCiZy1gJq/mWWa2UIzKzOzYjMbdYrjzMweMbN93tujZmY++y83s0/M7JCZbTKzCbW1EPGMd6YkxnF9hI131kS/8zK/DoW7cfoS3lqrUDiRsxHomf9koBxoBowGpppZNz/HTQAGAz2BHsC1wB0AZpYILASmAQ2AG4A/mlnPc1mAeBwoK+flVdsY0rs1DVOTQl1OULXPSmfhpDzOb5nBpOcUCidyNs7Y/M0sDRgG3O+cK3XOfQy8Cozxc/g44DHn3Fbn3DbgMWC8d18mkAHMdh7Lgc+A8899GTK/YAvHToRfemewNE5PZu7t/wqF++UrCoUTqYlAzvw7ARXOuQ0+21YD/s78u3n3/dtxzrldwFzgZjOLN7OBQDbwsb8famYTzKzAzAr27NkTQJmx62RFJbMXFzOwXWO6NM8IdTl1pioU7o6L2zF7STETFAonErBAmn86UFJtWwngb4i8+rElQLrPdf+5wC+B48BHwH3OOb9v33TOTXfO5TrncrOysgIoM3b9/bPdbDt4NKLf1HW24uKMn1/TlQcHd+eDz3dz/bTF7FIonMgZBdL8S/FcrvGVAfhL3ap+bAZQ6pxzZtYFmA+MBZLw/IvgXjP7Xo2rlm+YmV9Eq4b1uKJreKd3BtOYAdk8Pe5CvtpbxpDJi1i/81CoSxIJa4E0/w1Agpl19NnWEyj0c2yhd5+/47oDnzvn3nHOVTrnPgfeAK6uedlSZf3OQyzetI8xA7NJiI/tyd3LujT9OhRuxNTFfPSFLheKnMoZu4VzrgxYADxgZmlmNgi4Dpjt5/BZwN1m1srMWgL3ADO8+1YCHb3jnmZm7fFMA632cz8SoJn5xSQnxHFDFI931kRVKFyrRvW4+ZnlCoUTOYVATxUnAfWA3Xiu2090zhWa2UVmVupz3DTgNWAtsA7Pmf00AOfcRuAW4HHgEPAh8BLwdC2sIyYdPFLOwpVbGdK7FY3Sonu8syZaNqzHC3f+KxTuD+8oFE6kuoRADnLO7cczv199+0d4XuSt+toB93pv/u7neeD5s6pU/s3zX4935oS6lLBT3xsKd//L6/jz+1+y5cARHh3eg+SE+FCXJhIWAmr+En4qKh2zFhfT/7xMuraInfHOmkiMj+OhoRfQJjOV37/zOTsOHmP62L5
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(onecyc.lrs);"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Questionnaire"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For the questions here that ask you to explain what some function or class is, you should also complete your own code experiments."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. What is glob?\n",
"1. How do you open an image with the Python imaging library?\n",
"1. What does L.map do?\n",
"1. What does Self do?\n",
"1. What is L.val2idx?\n",
"1. What methods do you need to implement to create your own Dataset?\n",
"1. Why do we call `convert` when we open an image from Imagenette?\n",
"1. What does `~` do? How is it useful for splitting training and validation sets?\n",
"1. Which of these classes does `~` work with: `L`, `Tensor`, numpy array, Python `list`, pandas `DataFrame`?\n",
"1. What is ProcessPoolExecutor?\n",
"1. How does `L.range(self.ds)` work?\n",
"1. What is `__iter__`?\n",
"1. What is `first`?\n",
"1. What is `permute`? Why is it needed?\n",
"1. What is a recursive function? How does it help us define the `parameters` method?\n",
"1. Write a recursive function which returns the first 20 items of the Fibonacci sequence.\n",
"1. What is `super`?\n",
"1. Why do subclasses of Module need to override `forward` instead of defining `__call__`?\n",
"1. In `ConvLayer` why does `init` depend on `act`?\n",
"1. Why does `Sequential` need to call `register_modules`?\n",
"1. Write a hook that prints the shape of every layers activations.\n",
"1. What is LogSumExp?\n",
"1. Why is log_softmax useful?\n",
"1. What is GetAttr? How is it helpful for callbacks?\n",
"1. Reimplement one of the callbacks in this chapter without inheriting from `Callback` or `GetAttr`.\n",
"1. What does `Learner.__call__` do?\n",
"1. What is `getattr`? (Note the case difference to `GetAttr`!)\n",
"1. Why is there a `try` block in `fit`?\n",
"1. Why do we check for `model.training` in `one_batch`?\n",
"1. What is `store_attr`?\n",
"1. What is the purpose of `TrackResults.before_epoch`?\n",
"1. What does `model.cuda()` do? How does it work?\n",
"1. Why do we need to check `model.training` in `LRFinder` and `OneCycle`?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Further research"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Write `resnet18` from scratch (refer to <<chapter_resnet>> as needed), and train it with the Learner in this chapter.\n",
"1. Implement a batchnorm layer from scratch and use it in your resnet18.\n",
"1. Write a mixup callback for use in this chapter.\n",
"1. Add momentum to `SGD`.\n",
"1. Pick a few features that you're interested in from fastai (or any other library) and implement them in this chapter.\n",
"1. Pick a research paper that's not yet implemented in fastai or PyTorch and implement it in this chapter.\n",
" - Port it over to fastai.\n",
" - Submit a PR to fastai, or create your own extension module and release it. \n",
" - Hint: you may find it helpful to use [nbdev](https://nbdev.fast.ai/) to create and deploy your package."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2020-03-03 14:11:00 +00:00
"version": "3.7.5"
2020-02-28 19:44:06 +00:00
},
"toc": {
"base_numbering": 1,
"nav_menu": {
"height": "140px",
"width": "202px"
},
"number_sections": false,
"sideBar": true,
"skip_h1_title": true,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}