Merge pull request #102 from joe-bender/patch-4

Change "got" to "get" in 01_intro.ipynb, line 288
This commit is contained in:
Sylvain Gugger 2020-04-15 08:41:53 -04:00 committed by GitHub
commit 22639c8dc0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -285,7 +285,7 @@
"source": [ "source": [
"The hardest part of deep learning is artisanal: how do you know if you've got enough data; whether it is in the right format; if your model is training properly; and if it's not, what should you do about it? That is why we believe in learning by doing. As with basic data science skills, with deep learning you only get better through practical experience. Trying to spend too much time on the theory can be counterproductive. The key is to just code and try to solve problems: the theory can come later, when you have context and motivation.\n", "The hardest part of deep learning is artisanal: how do you know if you've got enough data; whether it is in the right format; if your model is training properly; and if it's not, what should you do about it? That is why we believe in learning by doing. As with basic data science skills, with deep learning you only get better through practical experience. Trying to spend too much time on the theory can be counterproductive. The key is to just code and try to solve problems: the theory can come later, when you have context and motivation.\n",
"\n", "\n",
"There will be times when the journey will feel hard. Times where you feel stuck. Don't give up! Rewind through the book to find the last bit where you definitely weren't stuck, and then read slowly through from there to find the first thing that isn't clear. Then try some code experiments yourself, and Google around for more tutorials on whatever the issue you're stuck with is--often you'll find some different angle on the material which might help it to click. Also, it's expected and normal to not understand everything (especially the code) on first reading. Trying to understand the material serially before proceeding can sometimes be hard. Sometimes things click into place after you got more context from parts down the road, from having a bigger picture. So if you do get stuck on a section, try moving on anyway and make a note to come back to it later.\n", "There will be times when the journey will feel hard. Times where you feel stuck. Don't give up! Rewind through the book to find the last bit where you definitely weren't stuck, and then read slowly through from there to find the first thing that isn't clear. Then try some code experiments yourself, and Google around for more tutorials on whatever the issue you're stuck with is--often you'll find some different angle on the material which might help it to click. Also, it's expected and normal to not understand everything (especially the code) on first reading. Trying to understand the material serially before proceeding can sometimes be hard. Sometimes things click into place after you get more context from parts down the road, from having a bigger picture. So if you do get stuck on a section, try moving on anyway and make a note to come back to it later.\n",
"\n", "\n",
"Remember, you don't need any particular academic background to succeed at deep learning. Many important breakthroughs are made in research and industry by folks without a PhD, such as the paper [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434), one of the most influential papers of the last decade, with over 5000 citations, which was written by Alec Radford when he was an under-graduate. Even at Tesla, where they're trying to solve the extremely tough challenge of making a self-driving car, CEO [Elon Musk says](https://twitter.com/elonmusk/status/1224089444963311616):\n", "Remember, you don't need any particular academic background to succeed at deep learning. Many important breakthroughs are made in research and industry by folks without a PhD, such as the paper [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434), one of the most influential papers of the last decade, with over 5000 citations, which was written by Alec Radford when he was an under-graduate. Even at Tesla, where they're trying to solve the extremely tough challenge of making a self-driving car, CEO [Elon Musk says](https://twitter.com/elonmusk/status/1224089444963311616):\n",
"\n", "\n",