From e10e95599e1a3cd0ea1dc2385dd74a7054a4cd97 Mon Sep 17 00:00:00 2001 From: gunchu Date: Wed, 29 Mar 2023 15:34:14 -0700 Subject: [PATCH 1/4] Fix `environment.yml` to include missing deps `execnb` and `nbformat` and add missing dep in `clean.py`. I was able to execute `clean.py` after these changes. --- environment.yml | 2 ++ tools/clean.py | 1 + 2 files changed, 3 insertions(+) diff --git a/environment.yml b/environment.yml index cf41740..f597e1b 100644 --- a/environment.yml +++ b/environment.yml @@ -7,6 +7,8 @@ dependencies: - python>=3.6 - pytorch>=1.6 - torchvision + - execnb + - nbformat - pip - pip: - -r requirements.txt diff --git a/tools/clean.py b/tools/clean.py index 298e6b2..8417184 100755 --- a/tools/clean.py +++ b/tools/clean.py @@ -4,6 +4,7 @@ import nbformat from nbdev.export import * from nbdev.clean import * from fastcore.all import * +from execnb.nbio import * _re_header = re.compile(r'^#+\s+\S+') _re_clean = re.compile(r'^\s*#\s*clean\s*') From 20a4ada9cbee7dd7ada06719f5647d98a404d588 Mon Sep 17 00:00:00 2001 From: gunchu Date: Wed, 29 Mar 2023 15:56:24 -0700 Subject: [PATCH 2/4] Regenerate clean/* --- clean/01_intro.ipynb | 62 +++++++++++- clean/02_production.ipynb | 78 ++++++++++++++- clean/03_ethics.ipynb | 43 ++++++++- clean/04_mnist_basics.ipynb | 173 +++++++++++++++++++++++++++++++++- clean/05_pet_breeds.ipynb | 78 ++++++++++++++- clean/06_multicat.ipynb | 77 ++++++++++++++- clean/07_sizing_and_tta.ipynb | 35 ++++++- clean/08_collab.ipynb | 74 ++++++++++++++- clean/09_tabular.ipynb | 151 ++++++++++++++++++++++++++++- clean/10_nlp.ipynb | 75 ++++++++++++++- clean/11_midlevel_data.ipynb | 63 ++++++++++++- clean/12_nlp_dive.ipynb | 70 +++++++++++++- clean/13_convolutions.ipynb | 92 +++++++++++++++++- clean/14_resnet.ipynb | 43 ++++++++- clean/15_arch_details.ipynb | 32 ++++++- clean/16_accel_sgd.ipynb | 48 +++++++++- clean/17_foundations.ipynb | 107 ++++++++++++++++++++- clean/18_CAM.ipynb | 37 +++++++- clean/19_learner.ipynb | 81 +++++++++++++++- clean/20_conclusion.ipynb | 8 +- clean/app_blog.ipynb | 13 ++- clean/app_jupyter.ipynb | 31 +++++- 22 files changed, 1427 insertions(+), 44 deletions(-) diff --git a/clean/01_intro.ipynb b/clean/01_intro.ipynb index c6382bb..89a6de4 100644 --- a/clean/01_intro.ipynb +++ b/clean/01_intro.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -24,6 +26,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# Your Deep Learning Journey" @@ -31,6 +34,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## Deep Learning Is for Everyone" @@ -38,6 +42,7 @@ }, { "cell_type": "markdown", + "idx_": 9, "metadata": {}, "source": [ "## Neural Networks: A Brief History" @@ -45,6 +50,7 @@ }, { "cell_type": "markdown", + "idx_": 15, "metadata": {}, "source": [ "## Who We Are" @@ -52,6 +58,7 @@ }, { "cell_type": "markdown", + "idx_": 22, "metadata": {}, "source": [ "## How to Learn Deep Learning" @@ -59,6 +66,7 @@ }, { "cell_type": "markdown", + "idx_": 26, "metadata": {}, "source": [ "### Your Projects and Your Mindset" @@ -66,6 +74,7 @@ }, { "cell_type": "markdown", + "idx_": 31, "metadata": {}, "source": [ "## The Software: PyTorch, fastai, and Jupyter" @@ -73,6 +82,7 @@ }, { "cell_type": "markdown", + "idx_": 37, "metadata": {}, "source": [ "## Your First Model" @@ -80,6 +90,7 @@ }, { "cell_type": "markdown", + "idx_": 40, "metadata": {}, "source": [ "### Getting a GPU Deep Learning Server" @@ -87,6 +98,7 @@ }, { "cell_type": "markdown", + "idx_": 47, "metadata": {}, "source": [ "### Running Your First Notebook" @@ -95,6 +107,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 54, "metadata": {}, "outputs": [], "source": [ @@ -113,6 +126,7 @@ }, { "cell_type": "markdown", + "idx_": 57, "metadata": {}, "source": [ "### Sidebar: This Book Was Written in Jupyter Notebooks" @@ -121,6 +135,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 60, "metadata": {}, "outputs": [], "source": [ @@ -130,6 +145,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 62, "metadata": {}, "outputs": [], "source": [ @@ -139,6 +155,7 @@ }, { "cell_type": "markdown", + "idx_": 63, "metadata": {}, "source": [ "### End sidebar" @@ -147,6 +164,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -157,6 +175,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 68, "metadata": {}, "outputs": [], "source": [ @@ -168,6 +187,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -179,6 +199,7 @@ }, { "cell_type": "markdown", + "idx_": 71, "metadata": {}, "source": [ "### What Is Machine Learning?" @@ -187,6 +208,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -197,6 +219,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 79, "metadata": {}, "outputs": [], "source": [ @@ -207,6 +230,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 81, "metadata": {}, "outputs": [], "source": [ @@ -219,6 +243,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -228,6 +253,7 @@ }, { "cell_type": "markdown", + "idx_": 86, "metadata": {}, "source": [ "### What Is a Neural Network?" @@ -235,6 +261,7 @@ }, { "cell_type": "markdown", + "idx_": 90, "metadata": {}, "source": [ "### A Bit of Deep Learning Jargon" @@ -243,6 +270,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 92, "metadata": {}, "outputs": [], "source": [ @@ -254,6 +282,7 @@ }, { "cell_type": "markdown", + "idx_": 93, "metadata": {}, "source": [ "### Limitations Inherent To Machine Learning\n", @@ -272,6 +301,7 @@ }, { "cell_type": "markdown", + "idx_": 96, "metadata": {}, "source": [ "### How Our Image Recognizer Works" @@ -279,6 +309,7 @@ }, { "cell_type": "markdown", + "idx_": 115, "metadata": {}, "source": [ "### What Our Image Recognizer Learned" @@ -286,6 +317,7 @@ }, { "cell_type": "markdown", + "idx_": 125, "metadata": {}, "source": [ "### Image Recognizers Can Tackle Non-Image Tasks" @@ -293,6 +325,7 @@ }, { "cell_type": "markdown", + "idx_": 137, "metadata": {}, "source": [ "### Jargon Recap" @@ -300,6 +333,7 @@ }, { "cell_type": "markdown", + "idx_": 140, "metadata": {}, "source": [ "## Deep Learning Is Not Just for Image Classification" @@ -308,6 +342,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 142, "metadata": {}, "outputs": [], "source": [ @@ -325,6 +360,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 144, "metadata": {}, "outputs": [], "source": [ @@ -334,6 +370,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 146, "metadata": {}, "outputs": [], "source": [ @@ -346,6 +383,7 @@ }, { "cell_type": "markdown", + "idx_": 147, "metadata": {}, "source": [ "If you hit a \"CUDA out of memory error\" after running this cell, click on the menu Kernel, then restart. Instead of executing the cell above, copy and paste the following code in it:\n", @@ -364,6 +402,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 149, "metadata": {}, "outputs": [], "source": [ @@ -372,6 +411,7 @@ }, { "cell_type": "markdown", + "idx_": 151, "metadata": {}, "source": [ "### Sidebar: The Order Matters" @@ -379,6 +419,7 @@ }, { "cell_type": "markdown", + "idx_": 153, "metadata": {}, "source": [ "### End sidebar" @@ -387,6 +428,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 158, "metadata": {}, "outputs": [], "source": [ @@ -405,6 +447,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 160, "metadata": {}, "outputs": [], "source": [ @@ -414,6 +457,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 163, "metadata": {}, "outputs": [], "source": [ @@ -427,6 +471,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 165, "metadata": {}, "outputs": [], "source": [ @@ -435,6 +480,7 @@ }, { "cell_type": "markdown", + "idx_": 166, "metadata": {}, "source": [ "### Sidebar: Datasets: Food for Models" @@ -442,6 +488,7 @@ }, { "cell_type": "markdown", + "idx_": 168, "metadata": {}, "source": [ "### End sidebar" @@ -449,6 +496,7 @@ }, { "cell_type": "markdown", + "idx_": 170, "metadata": {}, "source": [ "## Validation Sets and Test Sets" @@ -456,6 +504,7 @@ }, { "cell_type": "markdown", + "idx_": 173, "metadata": {}, "source": [ "### Use Judgment in Defining Test Sets" @@ -463,6 +512,7 @@ }, { "cell_type": "markdown", + "idx_": 185, "metadata": {}, "source": [ "## A _Choose Your Own Adventure_ moment" @@ -470,6 +520,7 @@ }, { "cell_type": "markdown", + "idx_": 187, "metadata": {}, "source": [ "## Questionnaire" @@ -477,6 +528,7 @@ }, { "cell_type": "markdown", + "idx_": 188, "metadata": {}, "source": [ "It can be hard to know in pages and pages of prose what the key things are that you really need to focus on and remember. So, we've prepared a list of questions and suggested steps to complete at the end of each chapter. All the answers are in the text of the chapter, so if you're not sure about anything here, reread that part of the text and make sure you understand it. Answers to all these questions are also available on the [book's website](https://book.fast.ai). You can also visit [the forums](https://forums.fast.ai) if you get stuck to get help from other folks studying this material.\n", @@ -486,6 +538,7 @@ }, { "cell_type": "markdown", + "idx_": 189, "metadata": {}, "source": [ "1. Do you need these for deep learning?\n", @@ -531,6 +584,7 @@ }, { "cell_type": "markdown", + "idx_": 190, "metadata": {}, "source": [ "### Further Research" @@ -538,6 +592,7 @@ }, { "cell_type": "markdown", + "idx_": 191, "metadata": {}, "source": [ "Each chapter also has a \"Further Research\" section that poses questions that aren't fully answered in the text, or gives more advanced assignments. Answers to these questions aren't on the book's website; you'll need to do your own research!" @@ -545,6 +600,7 @@ }, { "cell_type": "markdown", + "idx_": 192, "metadata": {}, "source": [ "1. Why is a GPU useful for deep learning? How is a CPU different, and why is it less effective for deep learning?\n", @@ -554,6 +610,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 193, "metadata": {}, "outputs": [], "source": [] @@ -564,11 +621,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 4, + "path_": "01_intro.ipynb" } diff --git a/clean/02_production.ipynb b/clean/02_production.ipynb index 730e1ea..0aeaf4b 100644 --- a/clean/02_production.ipynb +++ b/clean/02_production.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -25,6 +27,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# From Model to Production" @@ -32,6 +35,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## The Practice of Deep Learning" @@ -39,6 +43,7 @@ }, { "cell_type": "markdown", + "idx_": 7, "metadata": {}, "source": [ "### Starting Your Project" @@ -46,6 +51,7 @@ }, { "cell_type": "markdown", + "idx_": 11, "metadata": {}, "source": [ "### The State of Deep Learning" @@ -53,6 +59,7 @@ }, { "cell_type": "markdown", + "idx_": 13, "metadata": {}, "source": [ "#### Computer vision" @@ -60,6 +67,7 @@ }, { "cell_type": "markdown", + "idx_": 15, "metadata": {}, "source": [ "#### Text (natural language processing)" @@ -67,6 +75,7 @@ }, { "cell_type": "markdown", + "idx_": 17, "metadata": {}, "source": [ "#### Combining text and images" @@ -74,6 +83,7 @@ }, { "cell_type": "markdown", + "idx_": 19, "metadata": {}, "source": [ "#### Tabular data" @@ -81,6 +91,7 @@ }, { "cell_type": "markdown", + "idx_": 21, "metadata": {}, "source": [ "#### Recommendation systems" @@ -88,6 +99,7 @@ }, { "cell_type": "markdown", + "idx_": 24, "metadata": {}, "source": [ "#### Other data types" @@ -95,6 +107,7 @@ }, { "cell_type": "markdown", + "idx_": 26, "metadata": {}, "source": [ "### The Drivetrain Approach" @@ -102,6 +115,7 @@ }, { "cell_type": "markdown", + "idx_": 32, "metadata": {}, "source": [ "## Gathering Data" @@ -109,6 +123,7 @@ }, { "cell_type": "markdown", + "idx_": 36, "metadata": {}, "source": [ "# clean\n", @@ -118,6 +133,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 37, "metadata": {}, "outputs": [], "source": [ @@ -127,6 +143,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -136,6 +153,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -147,6 +165,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -157,6 +176,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -167,6 +187,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 44, "metadata": {}, "outputs": [], "source": [ @@ -177,6 +198,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 46, "metadata": {}, "outputs": [], "source": [ @@ -187,6 +209,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 47, "metadata": {}, "outputs": [], "source": [ @@ -202,6 +225,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -212,6 +236,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 52, "metadata": {}, "outputs": [], "source": [ @@ -222,6 +247,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 54, "metadata": {}, "outputs": [], "source": [ @@ -230,6 +256,7 @@ }, { "cell_type": "markdown", + "idx_": 55, "metadata": {}, "source": [ "### Sidebar: Getting Help in Jupyter Notebooks" @@ -237,6 +264,7 @@ }, { "cell_type": "markdown", + "idx_": 57, "metadata": {}, "source": [ "### End sidebar" @@ -244,6 +272,7 @@ }, { "cell_type": "markdown", + "idx_": 62, "metadata": {}, "source": [ "## From Data to DataLoaders" @@ -252,6 +281,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 66, "metadata": {}, "outputs": [], "source": [ @@ -266,6 +296,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -275,6 +306,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -284,6 +316,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -295,6 +328,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 74, "metadata": {}, "outputs": [], "source": [ @@ -306,6 +340,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 76, "metadata": {}, "outputs": [], "source": [ @@ -316,6 +351,7 @@ }, { "cell_type": "markdown", + "idx_": 78, "metadata": {}, "source": [ "### Data Augmentation" @@ -324,6 +360,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 80, "metadata": {}, "outputs": [], "source": [ @@ -334,6 +371,7 @@ }, { "cell_type": "markdown", + "idx_": 82, "metadata": {}, "source": [ "## Training Your Model, and Using It to Clean Your Data" @@ -342,6 +380,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 84, "metadata": {}, "outputs": [], "source": [ @@ -354,6 +393,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 86, "metadata": {}, "outputs": [], "source": [ @@ -364,6 +404,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 88, "metadata": {}, "outputs": [], "source": [ @@ -374,6 +415,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 90, "metadata": {}, "outputs": [], "source": [ @@ -383,6 +425,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 92, "metadata": {}, "outputs": [], "source": [ @@ -393,6 +436,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -403,6 +447,7 @@ }, { "cell_type": "markdown", + "idx_": 98, "metadata": {}, "source": [ "## Turning Your Model into an Online Application" @@ -410,6 +455,7 @@ }, { "cell_type": "markdown", + "idx_": 100, "metadata": {}, "source": [ "### Using the Model for Inference" @@ -418,6 +464,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 102, "metadata": {}, "outputs": [], "source": [ @@ -427,6 +474,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 104, "metadata": {}, "outputs": [], "source": [ @@ -437,6 +485,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 106, "metadata": {}, "outputs": [], "source": [ @@ -446,6 +495,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 108, "metadata": {}, "outputs": [], "source": [ @@ -455,6 +505,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 110, "metadata": {}, "outputs": [], "source": [ @@ -463,6 +514,7 @@ }, { "cell_type": "markdown", + "idx_": 113, "metadata": {}, "source": [ "### Creating a Notebook App from the Model" @@ -471,6 +523,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 115, "metadata": {}, "outputs": [], "source": [ @@ -481,6 +534,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 117, "metadata": {}, "outputs": [], "source": [ @@ -492,6 +546,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 118, "metadata": {}, "outputs": [], "source": [ @@ -501,6 +556,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 121, "metadata": {}, "outputs": [], "source": [ @@ -513,6 +569,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 123, "metadata": {}, "outputs": [], "source": [ @@ -522,6 +579,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 125, "metadata": {}, "outputs": [], "source": [ @@ -533,6 +591,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 127, "metadata": {}, "outputs": [], "source": [ @@ -543,6 +602,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 129, "metadata": {}, "outputs": [], "source": [ @@ -559,6 +619,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 131, "metadata": {}, "outputs": [], "source": [ @@ -570,6 +631,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 132, "metadata": {}, "outputs": [], "source": [ @@ -579,6 +641,7 @@ }, { "cell_type": "markdown", + "idx_": 135, "metadata": {}, "source": [ "### Turning Your Notebook into a Real App" @@ -587,6 +650,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 136, "metadata": {}, "outputs": [], "source": [ @@ -597,6 +661,7 @@ }, { "cell_type": "markdown", + "idx_": 138, "metadata": {}, "source": [ "### Deploying your app" @@ -604,6 +669,7 @@ }, { "cell_type": "markdown", + "idx_": 145, "metadata": {}, "source": [ "## How to Avoid Disaster" @@ -611,6 +677,7 @@ }, { "cell_type": "markdown", + "idx_": 151, "metadata": {}, "source": [ "### Unforeseen Consequences and Feedback Loops" @@ -618,6 +685,7 @@ }, { "cell_type": "markdown", + "idx_": 153, "metadata": {}, "source": [ "## Get Writing!" @@ -625,6 +693,7 @@ }, { "cell_type": "markdown", + "idx_": 155, "metadata": {}, "source": [ "## Questionnaire" @@ -632,6 +701,7 @@ }, { "cell_type": "markdown", + "idx_": 156, "metadata": {}, "source": [ "1. Provide an example of where the bear classification model might work poorly in production, due to structural or style differences in the training data.\n", @@ -665,6 +735,7 @@ }, { "cell_type": "markdown", + "idx_": 157, "metadata": {}, "source": [ "### Further Research" @@ -672,6 +743,7 @@ }, { "cell_type": "markdown", + "idx_": 158, "metadata": {}, "source": [ "1. Consider how the Drivetrain Approach maps to a project or problem you're interested in.\n", @@ -683,6 +755,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 159, "metadata": {}, "outputs": [], "source": [] @@ -693,11 +766,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 4, + "path_": "02_production.ipynb" } diff --git a/clean/03_ethics.ipynb b/clean/03_ethics.ipynb index b2702e7..b0d0c2d 100644 --- a/clean/03_ethics.ipynb +++ b/clean/03_ethics.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -14,6 +15,7 @@ }, { "cell_type": "markdown", + "idx_": 2, "metadata": {}, "source": [ "# Data Ethics" @@ -21,6 +23,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "### Sidebar: Acknowledgement: Dr. Rachel Thomas" @@ -28,6 +31,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "### End sidebar" @@ -35,6 +39,7 @@ }, { "cell_type": "markdown", + "idx_": 9, "metadata": {}, "source": [ "## Key Examples for Data Ethics" @@ -42,6 +47,7 @@ }, { "cell_type": "markdown", + "idx_": 11, "metadata": {}, "source": [ "### Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits" @@ -49,6 +55,7 @@ }, { "cell_type": "markdown", + "idx_": 13, "metadata": {}, "source": [ "### Feedback Loops: YouTube's Recommendation System" @@ -56,6 +63,7 @@ }, { "cell_type": "markdown", + "idx_": 15, "metadata": {}, "source": [ "### Bias: Professor Latanya Sweeney \"Arrested\"" @@ -63,6 +71,7 @@ }, { "cell_type": "markdown", + "idx_": 19, "metadata": {}, "source": [ "### Why Does This Matter?" @@ -70,6 +79,7 @@ }, { "cell_type": "markdown", + "idx_": 25, "metadata": {}, "source": [ "## Integrating Machine Learning with Product Design" @@ -77,6 +87,7 @@ }, { "cell_type": "markdown", + "idx_": 29, "metadata": {}, "source": [ "## Topics in Data Ethics" @@ -84,6 +95,7 @@ }, { "cell_type": "markdown", + "idx_": 32, "metadata": {}, "source": [ "### Recourse and Accountability" @@ -91,6 +103,7 @@ }, { "cell_type": "markdown", + "idx_": 34, "metadata": {}, "source": [ "### Feedback Loops" @@ -98,6 +111,7 @@ }, { "cell_type": "markdown", + "idx_": 42, "metadata": {}, "source": [ "### Bias" @@ -105,6 +119,7 @@ }, { "cell_type": "markdown", + "idx_": 46, "metadata": {}, "source": [ "#### Historical bias" @@ -112,6 +127,7 @@ }, { "cell_type": "markdown", + "idx_": 62, "metadata": {}, "source": [ "#### Measurement bias" @@ -119,6 +135,7 @@ }, { "cell_type": "markdown", + "idx_": 64, "metadata": {}, "source": [ "#### Aggregation bias" @@ -126,6 +143,7 @@ }, { "cell_type": "markdown", + "idx_": 66, "metadata": {}, "source": [ "#### Representation bias" @@ -133,6 +151,7 @@ }, { "cell_type": "markdown", + "idx_": 70, "metadata": {}, "source": [ "### Addressing different types of bias" @@ -140,6 +159,7 @@ }, { "cell_type": "markdown", + "idx_": 73, "metadata": {}, "source": [ "### Disinformation" @@ -147,6 +167,7 @@ }, { "cell_type": "markdown", + "idx_": 77, "metadata": {}, "source": [ "## Identifying and Addressing Ethical Issues" @@ -154,6 +175,7 @@ }, { "cell_type": "markdown", + "idx_": 79, "metadata": {}, "source": [ "### Analyze a Project You Are Working On" @@ -161,6 +183,7 @@ }, { "cell_type": "markdown", + "idx_": 81, "metadata": {}, "source": [ "### Processes to Implement" @@ -168,6 +191,7 @@ }, { "cell_type": "markdown", + "idx_": 83, "metadata": {}, "source": [ "#### Ethical lenses" @@ -175,6 +199,7 @@ }, { "cell_type": "markdown", + "idx_": 85, "metadata": {}, "source": [ "### The Power of Diversity" @@ -182,6 +207,7 @@ }, { "cell_type": "markdown", + "idx_": 88, "metadata": {}, "source": [ "### Fairness, Accountability, and Transparency" @@ -189,6 +215,7 @@ }, { "cell_type": "markdown", + "idx_": 92, "metadata": {}, "source": [ "## Role of Policy" @@ -196,6 +223,7 @@ }, { "cell_type": "markdown", + "idx_": 94, "metadata": {}, "source": [ "### The Effectiveness of Regulation" @@ -203,6 +231,7 @@ }, { "cell_type": "markdown", + "idx_": 96, "metadata": {}, "source": [ "### Rights and Policy" @@ -210,6 +239,7 @@ }, { "cell_type": "markdown", + "idx_": 98, "metadata": {}, "source": [ "### Cars: A Historical Precedent" @@ -217,6 +247,7 @@ }, { "cell_type": "markdown", + "idx_": 100, "metadata": {}, "source": [ "## Conclusion" @@ -224,6 +255,7 @@ }, { "cell_type": "markdown", + "idx_": 102, "metadata": {}, "source": [ "## Questionnaire" @@ -231,6 +263,7 @@ }, { "cell_type": "markdown", + "idx_": 103, "metadata": {}, "source": [ "1. Does ethics provide a list of \"right answers\"?\n", @@ -255,6 +288,7 @@ }, { "cell_type": "markdown", + "idx_": 104, "metadata": {}, "source": [ "### Further Research:" @@ -262,6 +296,7 @@ }, { "cell_type": "markdown", + "idx_": 105, "metadata": {}, "source": [ "1. Read the article \"What Happens When an Algorithm Cuts Your Healthcare\". How could problems like this be avoided in the future?\n", @@ -276,6 +311,7 @@ }, { "cell_type": "markdown", + "idx_": 106, "metadata": {}, "source": [ "## Deep Learning in Practice: That's a Wrap!" @@ -283,6 +319,7 @@ }, { "cell_type": "markdown", + "idx_": 107, "metadata": {}, "source": [ "Congratulations! You've made it to the end of the first section of the book. In this section we've tried to show you what deep learning can do, and how you can use it to create real applications and products. At this point, you will get a lot more out of the book if you spend some time trying out what you've learned. Perhaps you have already been doing this as you go along—in which case, great! If not, that's no problem either... Now is a great time to start experimenting yourself.\n", @@ -303,6 +340,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 108, "metadata": {}, "outputs": [], "source": [] @@ -313,11 +351,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 4, + "path_": "03_ethics.ipynb" } diff --git a/clean/04_mnist_basics.ipynb b/clean/04_mnist_basics.ipynb index a75eb39..48e4405 100644 --- a/clean/04_mnist_basics.ipynb +++ b/clean/04_mnist_basics.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -27,6 +29,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# Under the Hood: Training a Digit Classifier" @@ -34,6 +37,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## Pixels: The Foundations of Computer Vision" @@ -41,6 +45,7 @@ }, { "cell_type": "markdown", + "idx_": 7, "metadata": {}, "source": [ "## Sidebar: Tenacity and Deep Learning" @@ -48,6 +53,7 @@ }, { "cell_type": "markdown", + "idx_": 9, "metadata": {}, "source": [ "## End sidebar" @@ -56,6 +62,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -65,6 +72,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 12, "metadata": {}, "outputs": [], "source": [ @@ -75,6 +83,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 14, "metadata": {}, "outputs": [], "source": [ @@ -84,6 +93,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 16, "metadata": {}, "outputs": [], "source": [ @@ -93,6 +103,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -104,6 +115,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 20, "metadata": {}, "outputs": [], "source": [ @@ -115,6 +127,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 22, "metadata": {}, "outputs": [], "source": [ @@ -124,6 +137,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 24, "metadata": {}, "outputs": [], "source": [ @@ -133,6 +147,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 26, "metadata": {}, "outputs": [], "source": [ @@ -143,6 +158,7 @@ }, { "cell_type": "markdown", + "idx_": 29, "metadata": {}, "source": [ "## First Try: Pixel Similarity" @@ -151,6 +167,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -162,6 +179,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -171,6 +189,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -182,6 +201,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -191,6 +211,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -200,6 +221,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 45, "metadata": {}, "outputs": [], "source": [ @@ -210,6 +232,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 47, "metadata": {}, "outputs": [], "source": [ @@ -220,6 +243,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -230,6 +254,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 52, "metadata": {}, "outputs": [], "source": [ @@ -241,6 +266,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 53, "metadata": {}, "outputs": [], "source": [ @@ -252,6 +278,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 56, "metadata": {}, "outputs": [], "source": [ @@ -260,6 +287,7 @@ }, { "cell_type": "markdown", + "idx_": 61, "metadata": {}, "source": [ "### NumPy Arrays and PyTorch Tensors" @@ -268,6 +296,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -279,6 +308,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 66, "metadata": {}, "outputs": [], "source": [ @@ -288,6 +318,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -297,6 +328,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -306,6 +338,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -315,6 +348,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -324,6 +358,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -333,6 +368,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 77, "metadata": {}, "outputs": [], "source": [ @@ -342,6 +378,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 79, "metadata": {}, "outputs": [], "source": [ @@ -350,6 +387,7 @@ }, { "cell_type": "markdown", + "idx_": 81, "metadata": {}, "source": [ "## Computing Metrics Using Broadcasting" @@ -358,6 +396,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -373,6 +412,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 85, "metadata": {}, "outputs": [], "source": [ @@ -383,6 +423,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 87, "metadata": {}, "outputs": [], "source": [ @@ -393,6 +434,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 89, "metadata": {}, "outputs": [], "source": [ @@ -402,6 +444,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 91, "metadata": {}, "outputs": [], "source": [ @@ -411,6 +454,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 93, "metadata": {}, "outputs": [], "source": [ @@ -420,6 +464,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 95, "metadata": {}, "outputs": [], "source": [ @@ -429,6 +474,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 97, "metadata": {}, "outputs": [], "source": [ @@ -438,6 +484,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 99, "metadata": {}, "outputs": [], "source": [ @@ -449,6 +496,7 @@ }, { "cell_type": "markdown", + "idx_": 101, "metadata": {}, "source": [ "## Stochastic Gradient Descent (SGD)" @@ -457,6 +505,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 105, "metadata": {}, "outputs": [], "source": [ @@ -469,6 +518,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 108, "metadata": {}, "outputs": [], "source": [ @@ -478,6 +528,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 110, "metadata": {}, "outputs": [], "source": [ @@ -487,6 +538,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 112, "metadata": {}, "outputs": [], "source": [ @@ -496,6 +548,7 @@ }, { "cell_type": "markdown", + "idx_": 118, "metadata": {}, "source": [ "### Calculating Gradients" @@ -504,6 +557,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 121, "metadata": {}, "outputs": [], "source": [ @@ -513,6 +567,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 123, "metadata": {}, "outputs": [], "source": [ @@ -523,6 +578,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 125, "metadata": {}, "outputs": [], "source": [ @@ -532,6 +588,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 128, "metadata": {}, "outputs": [], "source": [ @@ -541,6 +598,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 130, "metadata": {}, "outputs": [], "source": [ @@ -551,6 +609,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 132, "metadata": {}, "outputs": [], "source": [ @@ -563,6 +622,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 134, "metadata": {}, "outputs": [], "source": [ @@ -572,6 +632,7 @@ }, { "cell_type": "markdown", + "idx_": 136, "metadata": {}, "source": [ "### Stepping With a Learning Rate" @@ -579,6 +640,7 @@ }, { "cell_type": "markdown", + "idx_": 144, "metadata": {}, "source": [ "### An End-to-End SGD Example" @@ -587,6 +649,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 146, "metadata": {}, "outputs": [], "source": [ @@ -596,6 +659,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 147, "metadata": {}, "outputs": [], "source": [ @@ -606,6 +670,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 149, "metadata": {}, "outputs": [], "source": [ @@ -617,6 +682,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 151, "metadata": {}, "outputs": [], "source": [ @@ -625,6 +691,7 @@ }, { "cell_type": "markdown", + "idx_": 153, "metadata": {}, "source": [ "#### Step 1: Initialize the parameters" @@ -633,6 +700,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 155, "metadata": {}, "outputs": [], "source": [ @@ -642,6 +710,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 156, "metadata": {}, "outputs": [], "source": [ @@ -651,6 +720,7 @@ }, { "cell_type": "markdown", + "idx_": 157, "metadata": {}, "source": [ "#### Step 2: Calculate the predictions" @@ -659,6 +729,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 159, "metadata": {}, "outputs": [], "source": [ @@ -668,6 +739,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 161, "metadata": {}, "outputs": [], "source": [ @@ -681,6 +753,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 162, "metadata": {}, "outputs": [], "source": [ @@ -689,6 +762,7 @@ }, { "cell_type": "markdown", + "idx_": 164, "metadata": {}, "source": [ "#### Step 3: Calculate the loss" @@ -697,6 +771,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 166, "metadata": {}, "outputs": [], "source": [ @@ -706,6 +781,7 @@ }, { "cell_type": "markdown", + "idx_": 168, "metadata": {}, "source": [ "#### Step 4: Calculate the gradients" @@ -714,6 +790,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 170, "metadata": {}, "outputs": [], "source": [ @@ -724,6 +801,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 171, "metadata": {}, "outputs": [], "source": [ @@ -733,6 +811,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 173, "metadata": {}, "outputs": [], "source": [ @@ -741,6 +820,7 @@ }, { "cell_type": "markdown", + "idx_": 174, "metadata": {}, "source": [ "#### Step 5: Step the weights. " @@ -749,6 +829,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 176, "metadata": {}, "outputs": [], "source": [ @@ -760,6 +841,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 179, "metadata": {}, "outputs": [], "source": [ @@ -770,6 +852,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 181, "metadata": {}, "outputs": [], "source": [ @@ -779,6 +862,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 183, "metadata": {}, "outputs": [], "source": [ @@ -794,6 +878,7 @@ }, { "cell_type": "markdown", + "idx_": 184, "metadata": {}, "source": [ "#### Step 6: Repeat the process " @@ -802,6 +887,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 186, "metadata": {}, "outputs": [], "source": [ @@ -811,6 +897,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 187, "metadata": {}, "outputs": [], "source": [ @@ -821,6 +908,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 189, "metadata": {}, "outputs": [], "source": [ @@ -831,6 +919,7 @@ }, { "cell_type": "markdown", + "idx_": 190, "metadata": {}, "source": [ "#### Step 7: stop" @@ -838,6 +927,7 @@ }, { "cell_type": "markdown", + "idx_": 192, "metadata": {}, "source": [ "### Summarizing Gradient Descent" @@ -846,6 +936,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 193, "metadata": {}, "outputs": [], "source": [ @@ -857,6 +948,7 @@ }, { "cell_type": "markdown", + "idx_": 195, "metadata": {}, "source": [ "## The MNIST Loss Function" @@ -865,6 +957,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 197, "metadata": {}, "outputs": [], "source": [ @@ -874,6 +967,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 199, "metadata": {}, "outputs": [], "source": [ @@ -884,6 +978,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 201, "metadata": {}, "outputs": [], "source": [ @@ -895,6 +990,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 202, "metadata": {}, "outputs": [], "source": [ @@ -906,6 +1002,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 204, "metadata": {}, "outputs": [], "source": [ @@ -915,6 +1012,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 205, "metadata": {}, "outputs": [], "source": [ @@ -924,6 +1022,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 207, "metadata": {}, "outputs": [], "source": [ @@ -933,6 +1032,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 211, "metadata": {}, "outputs": [], "source": [ @@ -942,6 +1042,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 215, "metadata": {}, "outputs": [], "source": [ @@ -953,6 +1054,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 218, "metadata": {}, "outputs": [], "source": [ @@ -963,6 +1065,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 219, "metadata": {}, "outputs": [], "source": [ @@ -972,6 +1075,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 221, "metadata": {}, "outputs": [], "source": [ @@ -981,6 +1085,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 222, "metadata": {}, "outputs": [], "source": [ @@ -991,6 +1096,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 225, "metadata": {}, "outputs": [], "source": [ @@ -1001,6 +1107,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 227, "metadata": {}, "outputs": [], "source": [ @@ -1011,6 +1118,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 230, "metadata": {}, "outputs": [], "source": [ @@ -1020,6 +1128,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 232, "metadata": {}, "outputs": [], "source": [ @@ -1029,6 +1138,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 234, "metadata": {}, "outputs": [], "source": [ @@ -1037,6 +1147,7 @@ }, { "cell_type": "markdown", + "idx_": 236, "metadata": {}, "source": [ "### Sigmoid" @@ -1045,6 +1156,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 238, "metadata": {}, "outputs": [], "source": [ @@ -1054,6 +1166,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 240, "metadata": {}, "outputs": [], "source": [ @@ -1063,6 +1176,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 242, "metadata": {}, "outputs": [], "source": [ @@ -1073,6 +1187,7 @@ }, { "cell_type": "markdown", + "idx_": 244, "metadata": {}, "source": [ "### SGD and Mini-Batches" @@ -1081,6 +1196,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 246, "metadata": {}, "outputs": [], "source": [ @@ -1092,6 +1208,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 248, "metadata": {}, "outputs": [], "source": [ @@ -1102,6 +1219,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 250, "metadata": {}, "outputs": [], "source": [ @@ -1111,6 +1229,7 @@ }, { "cell_type": "markdown", + "idx_": 252, "metadata": {}, "source": [ "## Putting It All Together" @@ -1119,6 +1238,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 255, "metadata": {}, "outputs": [], "source": [ @@ -1129,6 +1249,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 257, "metadata": {}, "outputs": [], "source": [ @@ -1140,6 +1261,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 259, "metadata": {}, "outputs": [], "source": [ @@ -1149,6 +1271,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 261, "metadata": {}, "outputs": [], "source": [ @@ -1159,6 +1282,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 262, "metadata": {}, "outputs": [], "source": [ @@ -1169,6 +1293,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 263, "metadata": {}, "outputs": [], "source": [ @@ -1179,6 +1304,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 265, "metadata": {}, "outputs": [], "source": [ @@ -1189,6 +1315,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 267, "metadata": {}, "outputs": [], "source": [ @@ -1201,6 +1328,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 269, "metadata": {}, "outputs": [], "source": [ @@ -1211,6 +1339,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 271, "metadata": {}, "outputs": [], "source": [ @@ -1221,6 +1350,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 273, "metadata": {}, "outputs": [], "source": [ @@ -1231,6 +1361,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 276, "metadata": {}, "outputs": [], "source": [ @@ -1245,6 +1376,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 278, "metadata": {}, "outputs": [], "source": [ @@ -1254,6 +1386,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 280, "metadata": {}, "outputs": [], "source": [ @@ -1266,6 +1399,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 282, "metadata": {}, "outputs": [], "source": [ @@ -1275,6 +1409,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 284, "metadata": {}, "outputs": [], "source": [ @@ -1286,6 +1421,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 285, "metadata": {}, "outputs": [], "source": [ @@ -1295,6 +1431,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 287, "metadata": {}, "outputs": [], "source": [ @@ -1307,6 +1444,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 289, "metadata": {}, "outputs": [], "source": [ @@ -1317,6 +1455,7 @@ }, { "cell_type": "markdown", + "idx_": 291, "metadata": {}, "source": [ "### Creating an Optimizer" @@ -1325,6 +1464,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 293, "metadata": {}, "outputs": [], "source": [ @@ -1334,6 +1474,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 295, "metadata": {}, "outputs": [], "source": [ @@ -1344,6 +1485,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 297, "metadata": {}, "outputs": [], "source": [ @@ -1360,6 +1502,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 299, "metadata": {}, "outputs": [], "source": [ @@ -1369,6 +1512,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 301, "metadata": {}, "outputs": [], "source": [ @@ -1382,6 +1526,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 303, "metadata": {}, "outputs": [], "source": [ @@ -1391,6 +1536,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 305, "metadata": {}, "outputs": [], "source": [ @@ -1403,6 +1549,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 307, "metadata": {}, "outputs": [], "source": [ @@ -1412,6 +1559,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 309, "metadata": {}, "outputs": [], "source": [ @@ -1423,6 +1571,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 311, "metadata": {}, "outputs": [], "source": [ @@ -1432,6 +1581,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 313, "metadata": {}, "outputs": [], "source": [ @@ -1442,6 +1592,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 315, "metadata": {}, "outputs": [], "source": [ @@ -1450,6 +1601,7 @@ }, { "cell_type": "markdown", + "idx_": 317, "metadata": {}, "source": [ "## Adding a Nonlinearity" @@ -1458,6 +1610,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 319, "metadata": {}, "outputs": [], "source": [ @@ -1471,6 +1624,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 321, "metadata": {}, "outputs": [], "source": [ @@ -1483,6 +1637,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 323, "metadata": {}, "outputs": [], "source": [ @@ -1492,6 +1647,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 328, "metadata": {}, "outputs": [], "source": [ @@ -1505,6 +1661,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 330, "metadata": {}, "outputs": [], "source": [ @@ -1515,6 +1672,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 331, "metadata": {}, "outputs": [], "source": [ @@ -1524,6 +1682,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 333, "metadata": {}, "outputs": [], "source": [ @@ -1533,6 +1692,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 335, "metadata": {}, "outputs": [], "source": [ @@ -1541,6 +1701,7 @@ }, { "cell_type": "markdown", + "idx_": 337, "metadata": {}, "source": [ "### Going Deeper" @@ -1549,6 +1710,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 339, "metadata": {}, "outputs": [], "source": [ @@ -1560,6 +1722,7 @@ }, { "cell_type": "markdown", + "idx_": 341, "metadata": {}, "source": [ "## Jargon Recap" @@ -1567,6 +1730,7 @@ }, { "cell_type": "markdown", + "idx_": 344, "metadata": {}, "source": [ "## Questionnaire" @@ -1574,6 +1738,7 @@ }, { "cell_type": "markdown", + "idx_": 345, "metadata": {}, "source": [ "1. How is a grayscale image represented on a computer? How about a color image?\n", @@ -1617,6 +1782,7 @@ }, { "cell_type": "markdown", + "idx_": 346, "metadata": {}, "source": [ "### Further Research" @@ -1624,6 +1790,7 @@ }, { "cell_type": "markdown", + "idx_": 347, "metadata": {}, "source": [ "1. Create your own implementation of `Learner` from scratch, based on the training loop shown in this chapter.\n", @@ -1633,6 +1800,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 348, "metadata": {}, "outputs": [], "source": [] @@ -1643,11 +1811,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 4, + "path_": "04_mnist_basics.ipynb" } diff --git a/clean/05_pet_breeds.ipynb b/clean/05_pet_breeds.ipynb index 0a1b328..fb43592 100644 --- a/clean/05_pet_breeds.ipynb +++ b/clean/05_pet_breeds.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -24,6 +26,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# Image Classification" @@ -31,6 +34,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## From Dogs and Cats to Pet Breeds" @@ -39,6 +43,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -49,6 +54,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -59,6 +65,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 10, "metadata": {}, "outputs": [], "source": [ @@ -68,6 +75,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 12, "metadata": {}, "outputs": [], "source": [ @@ -77,6 +85,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 14, "metadata": {}, "outputs": [], "source": [ @@ -86,6 +95,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 16, "metadata": {}, "outputs": [], "source": [ @@ -95,6 +105,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -109,6 +120,7 @@ }, { "cell_type": "markdown", + "idx_": 20, "metadata": {}, "source": [ "## Presizing" @@ -117,6 +129,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 24, "metadata": {}, "outputs": [], "source": [ @@ -145,6 +158,7 @@ }, { "cell_type": "markdown", + "idx_": 26, "metadata": {}, "source": [ "### Checking and Debugging a DataBlock" @@ -153,6 +167,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 28, "metadata": {}, "outputs": [], "source": [ @@ -162,6 +177,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 30, "metadata": {}, "outputs": [], "source": [ @@ -175,6 +191,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -184,6 +201,7 @@ }, { "cell_type": "markdown", + "idx_": 35, "metadata": {}, "source": [ "## Cross-Entropy Loss" @@ -191,6 +209,7 @@ }, { "cell_type": "markdown", + "idx_": 37, "metadata": {}, "source": [ "### Viewing Activations and Labels" @@ -199,6 +218,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -208,6 +228,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -217,6 +238,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -227,6 +249,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 45, "metadata": {}, "outputs": [], "source": [ @@ -235,6 +258,7 @@ }, { "cell_type": "markdown", + "idx_": 47, "metadata": {}, "source": [ "### Softmax" @@ -243,6 +267,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -252,6 +277,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -262,6 +288,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 52, "metadata": {}, "outputs": [], "source": [ @@ -272,6 +299,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 54, "metadata": {}, "outputs": [], "source": [ @@ -281,6 +309,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 56, "metadata": {}, "outputs": [], "source": [ @@ -290,6 +319,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 60, "metadata": {}, "outputs": [], "source": [ @@ -299,6 +329,7 @@ }, { "cell_type": "markdown", + "idx_": 64, "metadata": {}, "source": [ "### Log Likelihood" @@ -307,6 +338,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 66, "metadata": {}, "outputs": [], "source": [ @@ -316,6 +348,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 68, "metadata": {}, "outputs": [], "source": [ @@ -325,6 +358,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 70, "metadata": {}, "outputs": [], "source": [ @@ -335,6 +369,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 72, "metadata": {}, "outputs": [], "source": [ @@ -353,6 +388,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -362,6 +398,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 76, "metadata": {}, "outputs": [], "source": [ @@ -370,6 +407,7 @@ }, { "cell_type": "markdown", + "idx_": 79, "metadata": {}, "source": [ "#### Taking the Log\n", @@ -380,6 +418,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 80, "metadata": {}, "outputs": [], "source": [ @@ -389,6 +428,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -398,6 +438,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 86, "metadata": {}, "outputs": [], "source": [ @@ -412,6 +453,7 @@ }, { "cell_type": "markdown", + "idx_": 89, "metadata": {}, "source": [ "### Negative Log Likelihood" @@ -420,6 +462,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 92, "metadata": {}, "outputs": [], "source": [ @@ -429,6 +472,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -438,6 +482,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -447,6 +492,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 98, "metadata": {}, "outputs": [], "source": [ @@ -455,6 +501,7 @@ }, { "cell_type": "markdown", + "idx_": 102, "metadata": {}, "source": [ "## Model Interpretation" @@ -463,6 +510,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 104, "metadata": {}, "outputs": [], "source": [ @@ -473,6 +521,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 106, "metadata": {}, "outputs": [], "source": [ @@ -481,6 +530,7 @@ }, { "cell_type": "markdown", + "idx_": 108, "metadata": {}, "source": [ "## Improving Our Model" @@ -488,6 +538,7 @@ }, { "cell_type": "markdown", + "idx_": 110, "metadata": {}, "source": [ "### The Learning Rate Finder" @@ -496,6 +547,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 112, "metadata": {}, "outputs": [], "source": [ @@ -506,6 +558,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 114, "metadata": {}, "outputs": [], "source": [ @@ -516,6 +569,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 115, "metadata": {}, "outputs": [], "source": [ @@ -525,6 +579,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 117, "metadata": {}, "outputs": [], "source": [ @@ -534,6 +589,7 @@ }, { "cell_type": "markdown", + "idx_": 121, "metadata": {}, "source": [ "### Unfreezing and Transfer Learning" @@ -542,6 +598,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 124, "metadata": {}, "outputs": [], "source": [ @@ -551,6 +608,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 125, "metadata": {}, "outputs": [], "source": [ @@ -561,6 +619,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 127, "metadata": {}, "outputs": [], "source": [ @@ -570,6 +629,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 129, "metadata": {}, "outputs": [], "source": [ @@ -579,6 +639,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 131, "metadata": {}, "outputs": [], "source": [ @@ -587,6 +648,7 @@ }, { "cell_type": "markdown", + "idx_": 133, "metadata": {}, "source": [ "### Discriminative Learning Rates" @@ -595,6 +657,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 137, "metadata": {}, "outputs": [], "source": [ @@ -607,6 +670,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 139, "metadata": {}, "outputs": [], "source": [ @@ -615,6 +679,7 @@ }, { "cell_type": "markdown", + "idx_": 142, "metadata": {}, "source": [ "### Selecting the Number of Epochs" @@ -622,6 +687,7 @@ }, { "cell_type": "markdown", + "idx_": 144, "metadata": {}, "source": [ "### Deeper Architectures" @@ -630,6 +696,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 146, "metadata": {}, "outputs": [], "source": [ @@ -640,6 +707,7 @@ }, { "cell_type": "markdown", + "idx_": 148, "metadata": {}, "source": [ "## Conclusion" @@ -647,6 +715,7 @@ }, { "cell_type": "markdown", + "idx_": 150, "metadata": {}, "source": [ "## Questionnaire" @@ -654,6 +723,7 @@ }, { "cell_type": "markdown", + "idx_": 151, "metadata": {}, "source": [ "1. Why do we first resize to a large size on the CPU, and then to a smaller size on the GPU?\n", @@ -683,6 +753,7 @@ }, { "cell_type": "markdown", + "idx_": 152, "metadata": {}, "source": [ "### Further Research" @@ -690,6 +761,7 @@ }, { "cell_type": "markdown", + "idx_": 153, "metadata": {}, "source": [ "1. Find the paper by Leslie Smith that introduced the learning rate finder, and read it.\n", @@ -699,6 +771,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 154, "metadata": {}, "outputs": [], "source": [] @@ -709,11 +782,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 4, + "path_": "05_pet_breeds.ipynb" } diff --git a/clean/06_multicat.ipynb b/clean/06_multicat.ipynb index b8e46c7..32643a8 100644 --- a/clean/06_multicat.ipynb +++ b/clean/06_multicat.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -24,6 +26,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# Other Computer Vision Problems" @@ -31,6 +34,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## Multi-Label Classification" @@ -38,6 +42,7 @@ }, { "cell_type": "markdown", + "idx_": 7, "metadata": {}, "source": [ "### The Data" @@ -46,6 +51,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -56,6 +62,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -65,6 +72,7 @@ }, { "cell_type": "markdown", + "idx_": 13, "metadata": {}, "source": [ "### Sidebar: Pandas and DataFrames" @@ -73,6 +81,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -82,6 +91,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 16, "metadata": {}, "outputs": [], "source": [ @@ -94,6 +104,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -103,6 +114,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 20, "metadata": {}, "outputs": [], "source": [ @@ -113,6 +125,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 21, "metadata": {}, "outputs": [], "source": [ @@ -122,6 +135,7 @@ }, { "cell_type": "markdown", + "idx_": 23, "metadata": {}, "source": [ "### End sidebar" @@ -129,6 +143,7 @@ }, { "cell_type": "markdown", + "idx_": 25, "metadata": {}, "source": [ "### Constructing a DataBlock" @@ -137,6 +152,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -146,6 +162,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -155,6 +172,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -164,6 +182,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 34, "metadata": {}, "outputs": [], "source": [ @@ -174,6 +193,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -183,6 +203,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 37, "metadata": {}, "outputs": [], "source": [ @@ -194,6 +215,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -207,6 +229,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -220,6 +243,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 44, "metadata": {}, "outputs": [], "source": [ @@ -232,6 +256,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 48, "metadata": {}, "outputs": [], "source": [ @@ -242,6 +267,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 50, "metadata": {}, "outputs": [], "source": [ @@ -262,6 +288,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 52, "metadata": {}, "outputs": [], "source": [ @@ -276,6 +303,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 54, "metadata": {}, "outputs": [], "source": [ @@ -284,6 +312,7 @@ }, { "cell_type": "markdown", + "idx_": 57, "metadata": {}, "source": [ "### Binary Cross-Entropy" @@ -292,6 +321,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 59, "metadata": {}, "outputs": [], "source": [ @@ -301,6 +331,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 61, "metadata": {}, "outputs": [], "source": [ @@ -312,6 +343,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 63, "metadata": {}, "outputs": [], "source": [ @@ -321,6 +353,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 66, "metadata": {}, "outputs": [], "source": [ @@ -332,6 +365,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 70, "metadata": {}, "outputs": [], "source": [ @@ -343,6 +377,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -353,6 +388,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -363,6 +399,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 77, "metadata": {}, "outputs": [], "source": [ @@ -373,6 +410,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 79, "metadata": {}, "outputs": [], "source": [ @@ -383,6 +421,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 81, "metadata": {}, "outputs": [], "source": [ @@ -393,6 +432,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -402,6 +442,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 85, "metadata": {}, "outputs": [], "source": [ @@ -411,6 +452,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 87, "metadata": {}, "outputs": [], "source": [ @@ -421,6 +463,7 @@ }, { "cell_type": "markdown", + "idx_": 89, "metadata": {}, "source": [ "## Regression" @@ -428,6 +471,7 @@ }, { "cell_type": "markdown", + "idx_": 91, "metadata": {}, "source": [ "### Assemble the Data" @@ -436,6 +480,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 93, "metadata": {}, "outputs": [], "source": [ @@ -445,6 +490,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -455,6 +501,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -464,6 +511,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 98, "metadata": {}, "outputs": [], "source": [ @@ -473,6 +521,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 100, "metadata": {}, "outputs": [], "source": [ @@ -484,6 +533,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 102, "metadata": {}, "outputs": [], "source": [ @@ -494,6 +544,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 103, "metadata": {}, "outputs": [], "source": [ @@ -503,6 +554,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 105, "metadata": {}, "outputs": [], "source": [ @@ -517,6 +569,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 107, "metadata": {}, "outputs": [], "source": [ @@ -526,6 +579,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 109, "metadata": {}, "outputs": [], "source": [ @@ -541,6 +595,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 112, "metadata": {}, "outputs": [], "source": [ @@ -551,6 +606,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 114, "metadata": {}, "outputs": [], "source": [ @@ -561,6 +617,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 117, "metadata": {}, "outputs": [], "source": [ @@ -569,6 +626,7 @@ }, { "cell_type": "markdown", + "idx_": 120, "metadata": {}, "source": [ "### Training a Model" @@ -577,6 +635,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 122, "metadata": {}, "outputs": [], "source": [ @@ -586,6 +645,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 124, "metadata": {}, "outputs": [], "source": [ @@ -595,6 +655,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 126, "metadata": {}, "outputs": [], "source": [ @@ -604,6 +665,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 128, "metadata": {}, "outputs": [], "source": [ @@ -613,6 +675,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 130, "metadata": {}, "outputs": [], "source": [ @@ -622,6 +685,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 132, "metadata": {}, "outputs": [], "source": [ @@ -632,6 +696,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 134, "metadata": {}, "outputs": [], "source": [ @@ -641,6 +706,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 136, "metadata": {}, "outputs": [], "source": [ @@ -649,6 +715,7 @@ }, { "cell_type": "markdown", + "idx_": 138, "metadata": {}, "source": [ "## Conclusion" @@ -656,6 +723,7 @@ }, { "cell_type": "markdown", + "idx_": 140, "metadata": {}, "source": [ "## Questionnaire" @@ -663,6 +731,7 @@ }, { "cell_type": "markdown", + "idx_": 141, "metadata": {}, "source": [ "1. How could multi-label classification improve the usability of the bear classifier?\n", @@ -686,6 +755,7 @@ }, { "cell_type": "markdown", + "idx_": 142, "metadata": {}, "source": [ "### Further Research" @@ -693,6 +763,7 @@ }, { "cell_type": "markdown", + "idx_": 143, "metadata": {}, "source": [ "1. Read a tutorial about Pandas DataFrames and experiment with a few methods that look interesting to you. See the book's website for recommended tutorials.\n", @@ -702,6 +773,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 144, "metadata": {}, "outputs": [], "source": [] @@ -712,11 +784,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 4, + "path_": "06_multicat.ipynb" } diff --git a/clean/07_sizing_and_tta.ipynb b/clean/07_sizing_and_tta.ipynb index 37795af..5398d76 100644 --- a/clean/07_sizing_and_tta.ipynb +++ b/clean/07_sizing_and_tta.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -24,6 +26,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# Training a State-of-the-Art Model" @@ -31,6 +34,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## Imagenette" @@ -39,6 +43,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -49,6 +54,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -63,6 +69,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -73,6 +80,7 @@ }, { "cell_type": "markdown", + "idx_": 13, "metadata": {}, "source": [ "## Normalization" @@ -81,6 +89,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -91,6 +100,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -107,6 +117,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -116,6 +127,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 19, "metadata": {}, "outputs": [], "source": [ @@ -126,6 +138,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 21, "metadata": {}, "outputs": [], "source": [ @@ -136,6 +149,7 @@ }, { "cell_type": "markdown", + "idx_": 23, "metadata": {}, "source": [ "## Progressive Resizing" @@ -144,6 +158,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -156,6 +171,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -165,6 +181,7 @@ }, { "cell_type": "markdown", + "idx_": 31, "metadata": {}, "source": [ "## Test Time Augmentation" @@ -173,6 +190,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 35, "metadata": {}, "outputs": [], "source": [ @@ -182,6 +200,7 @@ }, { "cell_type": "markdown", + "idx_": 37, "metadata": {}, "source": [ "## Mixup" @@ -189,6 +208,7 @@ }, { "cell_type": "markdown", + "idx_": 40, "metadata": {}, "source": [ "### Sidebar: Papers and Math" @@ -196,6 +216,7 @@ }, { "cell_type": "markdown", + "idx_": 42, "metadata": {}, "source": [ "### End sidebar" @@ -204,6 +225,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 44, "metadata": {}, "outputs": [], "source": [ @@ -222,6 +244,7 @@ }, { "cell_type": "markdown", + "idx_": 48, "metadata": {}, "source": [ "## Label Smoothing" @@ -229,6 +252,7 @@ }, { "cell_type": "markdown", + "idx_": 50, "metadata": {}, "source": [ "### Sidebar: Label Smoothing, the Paper" @@ -236,6 +260,7 @@ }, { "cell_type": "markdown", + "idx_": 53, "metadata": {}, "source": [ "### End sidebar" @@ -243,6 +268,7 @@ }, { "cell_type": "markdown", + "idx_": 55, "metadata": {}, "source": [ "## Conclusion" @@ -250,6 +276,7 @@ }, { "cell_type": "markdown", + "idx_": 57, "metadata": {}, "source": [ "## Questionnaire" @@ -257,6 +284,7 @@ }, { "cell_type": "markdown", + "idx_": 58, "metadata": {}, "source": [ "1. What is the difference between ImageNet and Imagenette? When is it better to experiment on one versus the other?\n", @@ -277,6 +305,7 @@ }, { "cell_type": "markdown", + "idx_": 59, "metadata": {}, "source": [ "### Further Research\n", @@ -290,6 +319,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 60, "metadata": {}, "outputs": [], "source": [] @@ -300,11 +330,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 2, + "path_": "07_sizing_and_tta.ipynb" } diff --git a/clean/08_collab.ipynb b/clean/08_collab.ipynb index 4276585..30c1013 100644 --- a/clean/08_collab.ipynb +++ b/clean/08_collab.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -24,6 +26,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# Collaborative Filtering Deep Dive" @@ -31,6 +34,7 @@ }, { "cell_type": "markdown", + "idx_": 6, "metadata": {}, "source": [ "## A First Look at the Data" @@ -39,6 +43,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -50,6 +55,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -61,6 +67,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -70,6 +77,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -79,6 +87,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 19, "metadata": {}, "outputs": [], "source": [ @@ -88,6 +97,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 23, "metadata": {}, "outputs": [], "source": [ @@ -97,6 +107,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -105,6 +116,7 @@ }, { "cell_type": "markdown", + "idx_": 27, "metadata": {}, "source": [ "## Learning the Latent Factors" @@ -112,6 +124,7 @@ }, { "cell_type": "markdown", + "idx_": 32, "metadata": {}, "source": [ "## Creating the DataLoaders" @@ -120,6 +133,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 34, "metadata": {}, "outputs": [], "source": [ @@ -131,6 +145,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -141,6 +156,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -151,6 +167,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -160,6 +177,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -174,6 +192,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -183,6 +202,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 44, "metadata": {}, "outputs": [], "source": [ @@ -192,6 +212,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 46, "metadata": {}, "outputs": [], "source": [ @@ -200,6 +221,7 @@ }, { "cell_type": "markdown", + "idx_": 50, "metadata": {}, "source": [ "## Collaborative Filtering from Scratch" @@ -208,6 +230,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 52, "metadata": {}, "outputs": [], "source": [ @@ -219,6 +242,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 54, "metadata": {}, "outputs": [], "source": [ @@ -229,6 +253,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 56, "metadata": {}, "outputs": [], "source": [ @@ -246,6 +271,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 58, "metadata": {}, "outputs": [], "source": [ @@ -256,6 +282,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 60, "metadata": {}, "outputs": [], "source": [ @@ -266,6 +293,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 62, "metadata": {}, "outputs": [], "source": [ @@ -275,6 +303,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 64, "metadata": {}, "outputs": [], "source": [ @@ -293,6 +322,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -304,6 +334,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -326,6 +357,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -336,6 +368,7 @@ }, { "cell_type": "markdown", + "idx_": 71, "metadata": {}, "source": [ "### Weight Decay" @@ -344,6 +377,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -359,6 +393,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -369,6 +404,7 @@ }, { "cell_type": "markdown", + "idx_": 77, "metadata": {}, "source": [ "### Creating Our Own Embedding Module" @@ -377,6 +413,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 79, "metadata": {}, "outputs": [], "source": [ @@ -389,6 +426,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 81, "metadata": {}, "outputs": [], "source": [ @@ -401,6 +439,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -414,6 +453,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 84, "metadata": {}, "outputs": [], "source": [ @@ -423,6 +463,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 86, "metadata": {}, "outputs": [], "source": [ @@ -433,6 +474,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 88, "metadata": {}, "outputs": [], "source": [ @@ -455,6 +497,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 90, "metadata": {}, "outputs": [], "source": [ @@ -465,6 +508,7 @@ }, { "cell_type": "markdown", + "idx_": 92, "metadata": {}, "source": [ "## Interpreting Embeddings and Biases" @@ -473,6 +517,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -484,6 +529,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -494,6 +540,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 98, "metadata": {}, "outputs": [], "source": [ @@ -515,6 +562,7 @@ }, { "cell_type": "markdown", + "idx_": 102, "metadata": {}, "source": [ "### Using fastai.collab" @@ -523,6 +571,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 104, "metadata": {}, "outputs": [], "source": [ @@ -532,6 +581,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 105, "metadata": {}, "outputs": [], "source": [ @@ -541,6 +591,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 107, "metadata": {}, "outputs": [], "source": [ @@ -550,6 +601,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 109, "metadata": {}, "outputs": [], "source": [ @@ -560,6 +612,7 @@ }, { "cell_type": "markdown", + "idx_": 111, "metadata": {}, "source": [ "### Embedding Distance" @@ -568,6 +621,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 113, "metadata": {}, "outputs": [], "source": [ @@ -580,6 +634,7 @@ }, { "cell_type": "markdown", + "idx_": 115, "metadata": {}, "source": [ "## Bootstrapping a Collaborative Filtering Model" @@ -587,6 +642,7 @@ }, { "cell_type": "markdown", + "idx_": 119, "metadata": {}, "source": [ "## Deep Learning for Collaborative Filtering" @@ -595,6 +651,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 121, "metadata": {}, "outputs": [], "source": [ @@ -605,6 +662,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 123, "metadata": {}, "outputs": [], "source": [ @@ -627,6 +685,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 125, "metadata": {}, "outputs": [], "source": [ @@ -636,6 +695,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 127, "metadata": {}, "outputs": [], "source": [ @@ -646,6 +706,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 129, "metadata": {}, "outputs": [], "source": [ @@ -656,6 +717,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 131, "metadata": {}, "outputs": [], "source": [ @@ -667,6 +729,7 @@ }, { "cell_type": "markdown", + "idx_": 133, "metadata": {}, "source": [ "### Sidebar: kwargs and Delegates" @@ -674,6 +737,7 @@ }, { "cell_type": "markdown", + "idx_": 135, "metadata": {}, "source": [ "### End sidebar" @@ -681,6 +745,7 @@ }, { "cell_type": "markdown", + "idx_": 137, "metadata": {}, "source": [ "## Conclusion" @@ -688,6 +753,7 @@ }, { "cell_type": "markdown", + "idx_": 139, "metadata": {}, "source": [ "## Questionnaire" @@ -695,6 +761,7 @@ }, { "cell_type": "markdown", + "idx_": 140, "metadata": {}, "source": [ "1. What problem does collaborative filtering solve?\n", @@ -732,6 +799,7 @@ }, { "cell_type": "markdown", + "idx_": 141, "metadata": {}, "source": [ "### Further Research\n", @@ -745,6 +813,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 142, "metadata": {}, "outputs": [], "source": [] @@ -755,11 +824,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 2, + "path_": "08_collab.ipynb" } diff --git a/clean/09_tabular.ipynb b/clean/09_tabular.ipynb index 57ef84d..aaf8f6a 100644 --- a/clean/09_tabular.ipynb +++ b/clean/09_tabular.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -33,6 +35,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# Tabular Modeling Deep Dive" @@ -40,6 +43,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## Categorical Embeddings" @@ -47,6 +51,7 @@ }, { "cell_type": "markdown", + "idx_": 21, "metadata": {}, "source": [ "## Beyond Deep Learning" @@ -54,6 +59,7 @@ }, { "cell_type": "markdown", + "idx_": 25, "metadata": {}, "source": [ "## The Dataset" @@ -61,6 +67,7 @@ }, { "cell_type": "markdown", + "idx_": 27, "metadata": {}, "source": [ "### Kaggle Competitions" @@ -69,6 +76,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -78,6 +86,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -91,6 +100,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -102,6 +112,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 34, "metadata": {}, "outputs": [], "source": [ @@ -112,6 +123,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -127,6 +139,7 @@ }, { "cell_type": "markdown", + "idx_": 38, "metadata": {}, "source": [ "### Look at the Data" @@ -135,6 +148,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -144,6 +158,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -153,6 +168,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -162,6 +178,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 45, "metadata": {}, "outputs": [], "source": [ @@ -171,6 +188,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 46, "metadata": {}, "outputs": [], "source": [ @@ -181,6 +199,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 48, "metadata": {}, "outputs": [], "source": [ @@ -190,6 +209,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -198,6 +218,7 @@ }, { "cell_type": "markdown", + "idx_": 51, "metadata": {}, "source": [ "## Decision Trees" @@ -205,6 +226,7 @@ }, { "cell_type": "markdown", + "idx_": 56, "metadata": {}, "source": [ "### Handling Dates" @@ -213,6 +235,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 58, "metadata": {}, "outputs": [], "source": [ @@ -222,6 +245,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 60, "metadata": {}, "outputs": [], "source": [ @@ -232,6 +256,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 62, "metadata": {}, "outputs": [], "source": [ @@ -240,6 +265,7 @@ }, { "cell_type": "markdown", + "idx_": 64, "metadata": {}, "source": [ "### Using TabularPandas and TabularProc" @@ -248,6 +274,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 66, "metadata": {}, "outputs": [], "source": [ @@ -257,6 +284,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 68, "metadata": {}, "outputs": [], "source": [ @@ -270,6 +298,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 70, "metadata": {}, "outputs": [], "source": [ @@ -279,6 +308,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -288,6 +318,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -297,6 +328,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -306,6 +338,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 76, "metadata": {}, "outputs": [], "source": [ @@ -316,6 +349,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 78, "metadata": {}, "outputs": [], "source": [ @@ -325,6 +359,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 79, "metadata": {}, "outputs": [], "source": [ @@ -334,6 +369,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 81, "metadata": {}, "outputs": [], "source": [ @@ -343,6 +379,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -351,6 +388,7 @@ }, { "cell_type": "markdown", + "idx_": 86, "metadata": {}, "source": [ "### Creating the Decision Tree" @@ -359,6 +397,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 88, "metadata": {}, "outputs": [], "source": [ @@ -369,6 +408,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 89, "metadata": {}, "outputs": [], "source": [ @@ -379,6 +419,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 91, "metadata": {}, "outputs": [], "source": [ @@ -389,6 +430,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 93, "metadata": {}, "outputs": [], "source": [ @@ -398,6 +440,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -410,6 +453,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 98, "metadata": {}, "outputs": [], "source": [ @@ -420,6 +464,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 100, "metadata": {}, "outputs": [], "source": [ @@ -433,6 +478,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 102, "metadata": {}, "outputs": [], "source": [ @@ -443,6 +489,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 104, "metadata": {}, "outputs": [], "source": [ @@ -453,6 +500,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 105, "metadata": {}, "outputs": [], "source": [ @@ -462,6 +510,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 107, "metadata": {}, "outputs": [], "source": [ @@ -471,6 +520,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 109, "metadata": {}, "outputs": [], "source": [ @@ -480,6 +530,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 111, "metadata": {}, "outputs": [], "source": [ @@ -491,6 +542,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 113, "metadata": {}, "outputs": [], "source": [ @@ -499,6 +551,7 @@ }, { "cell_type": "markdown", + "idx_": 117, "metadata": {}, "source": [ "### Categorical Variables" @@ -506,6 +559,7 @@ }, { "cell_type": "markdown", + "idx_": 121, "metadata": {}, "source": [ "## Random Forests" @@ -514,6 +568,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 123, "metadata": {}, "outputs": [], "source": [ @@ -523,6 +578,7 @@ }, { "cell_type": "markdown", + "idx_": 124, "metadata": {}, "source": [ "### Creating a Random Forest" @@ -531,6 +587,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 126, "metadata": {}, "outputs": [], "source": [ @@ -544,6 +601,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 127, "metadata": {}, "outputs": [], "source": [ @@ -553,6 +611,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 129, "metadata": {}, "outputs": [], "source": [ @@ -562,6 +621,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 133, "metadata": {}, "outputs": [], "source": [ @@ -571,6 +631,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 135, "metadata": {}, "outputs": [], "source": [ @@ -580,6 +641,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 137, "metadata": {}, "outputs": [], "source": [ @@ -588,6 +650,7 @@ }, { "cell_type": "markdown", + "idx_": 139, "metadata": {}, "source": [ "### Out-of-Bag Error" @@ -596,6 +659,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 141, "metadata": {}, "outputs": [], "source": [ @@ -604,6 +668,7 @@ }, { "cell_type": "markdown", + "idx_": 144, "metadata": {}, "source": [ "## Model Interpretation" @@ -611,6 +676,7 @@ }, { "cell_type": "markdown", + "idx_": 146, "metadata": {}, "source": [ "### Tree Variance for Prediction Confidence" @@ -619,6 +685,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 148, "metadata": {}, "outputs": [], "source": [ @@ -628,6 +695,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 149, "metadata": {}, "outputs": [], "source": [ @@ -637,6 +705,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 151, "metadata": {}, "outputs": [], "source": [ @@ -646,6 +715,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 153, "metadata": {}, "outputs": [], "source": [ @@ -654,6 +724,7 @@ }, { "cell_type": "markdown", + "idx_": 155, "metadata": {}, "source": [ "### Feature Importance" @@ -662,6 +733,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 157, "metadata": {}, "outputs": [], "source": [ @@ -673,6 +745,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 159, "metadata": {}, "outputs": [], "source": [ @@ -683,6 +756,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 161, "metadata": {}, "outputs": [], "source": [ @@ -694,6 +768,7 @@ }, { "cell_type": "markdown", + "idx_": 163, "metadata": {}, "source": [ "### Removing Low-Importance Variables" @@ -702,6 +777,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 165, "metadata": {}, "outputs": [], "source": [ @@ -712,6 +788,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 167, "metadata": {}, "outputs": [], "source": [ @@ -722,6 +799,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 168, "metadata": {}, "outputs": [], "source": [ @@ -731,6 +809,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 170, "metadata": {}, "outputs": [], "source": [ @@ -740,6 +819,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 172, "metadata": {}, "outputs": [], "source": [ @@ -749,6 +829,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 174, "metadata": {}, "outputs": [], "source": [ @@ -757,6 +838,7 @@ }, { "cell_type": "markdown", + "idx_": 176, "metadata": {}, "source": [ "### Removing Redundant Features" @@ -765,6 +847,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 178, "metadata": {}, "outputs": [], "source": [ @@ -774,6 +857,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 180, "metadata": {}, "outputs": [], "source": [ @@ -787,6 +871,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 182, "metadata": {}, "outputs": [], "source": [ @@ -796,6 +881,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 184, "metadata": {}, "outputs": [], "source": [ @@ -808,6 +894,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 186, "metadata": {}, "outputs": [], "source": [ @@ -818,6 +905,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 188, "metadata": {}, "outputs": [], "source": [ @@ -828,6 +916,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 189, "metadata": {}, "outputs": [], "source": [ @@ -838,6 +927,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 191, "metadata": {}, "outputs": [], "source": [ @@ -848,6 +938,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 193, "metadata": {}, "outputs": [], "source": [ @@ -857,6 +948,7 @@ }, { "cell_type": "markdown", + "idx_": 195, "metadata": {}, "source": [ "### Partial Dependence" @@ -865,6 +957,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 197, "metadata": {}, "outputs": [], "source": [ @@ -876,6 +969,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 199, "metadata": {}, "outputs": [], "source": [ @@ -885,6 +979,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 201, "metadata": {}, "outputs": [], "source": [ @@ -897,6 +992,7 @@ }, { "cell_type": "markdown", + "idx_": 203, "metadata": {}, "source": [ "### Data Leakage" @@ -904,6 +1000,7 @@ }, { "cell_type": "markdown", + "idx_": 205, "metadata": {}, "source": [ "### Tree Interpreter" @@ -912,6 +1009,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 206, "metadata": {}, "outputs": [], "source": [ @@ -926,6 +1024,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 209, "metadata": {}, "outputs": [], "source": [ @@ -935,6 +1034,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 211, "metadata": {}, "outputs": [], "source": [ @@ -944,6 +1044,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 213, "metadata": {}, "outputs": [], "source": [ @@ -953,6 +1054,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 215, "metadata": {}, "outputs": [], "source": [ @@ -962,6 +1064,7 @@ }, { "cell_type": "markdown", + "idx_": 218, "metadata": {}, "source": [ "## Extrapolation and Neural Networks" @@ -969,6 +1072,7 @@ }, { "cell_type": "markdown", + "idx_": 220, "metadata": {}, "source": [ "### The Extrapolation Problem" @@ -977,6 +1081,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 221, "metadata": {}, "outputs": [], "source": [ @@ -987,6 +1092,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 223, "metadata": {}, "outputs": [], "source": [ @@ -998,6 +1104,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 225, "metadata": {}, "outputs": [], "source": [ @@ -1008,6 +1115,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 227, "metadata": {}, "outputs": [], "source": [ @@ -1017,6 +1125,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 229, "metadata": {}, "outputs": [], "source": [ @@ -1026,6 +1135,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 231, "metadata": {}, "outputs": [], "source": [ @@ -1035,6 +1145,7 @@ }, { "cell_type": "markdown", + "idx_": 233, "metadata": {}, "source": [ "### Finding Out-of-Domain Data" @@ -1043,6 +1154,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 235, "metadata": {}, "outputs": [], "source": [ @@ -1056,6 +1168,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 237, "metadata": {}, "outputs": [], "source": [ @@ -1070,6 +1183,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 239, "metadata": {}, "outputs": [], "source": [ @@ -1084,6 +1198,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 241, "metadata": {}, "outputs": [], "source": [ @@ -1093,6 +1208,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 243, "metadata": {}, "outputs": [], "source": [ @@ -1104,6 +1220,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 244, "metadata": {}, "outputs": [], "source": [ @@ -1113,6 +1230,7 @@ }, { "cell_type": "markdown", + "idx_": 246, "metadata": {}, "source": [ "### Using a Neural Network" @@ -1121,6 +1239,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 248, "metadata": {}, "outputs": [], "source": [ @@ -1134,6 +1253,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 250, "metadata": {}, "outputs": [], "source": [ @@ -1143,6 +1263,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 252, "metadata": {}, "outputs": [], "source": [ @@ -1152,6 +1273,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 254, "metadata": {}, "outputs": [], "source": [ @@ -1161,6 +1283,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 256, "metadata": {}, "outputs": [], "source": [ @@ -1170,6 +1293,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 258, "metadata": {}, "outputs": [], "source": [ @@ -1182,6 +1306,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 260, "metadata": {}, "outputs": [], "source": [ @@ -1191,6 +1316,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 262, "metadata": {}, "outputs": [], "source": [ @@ -1202,6 +1328,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 264, "metadata": {}, "outputs": [], "source": [ @@ -1211,6 +1338,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 266, "metadata": {}, "outputs": [], "source": [ @@ -1221,6 +1349,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 268, "metadata": {}, "outputs": [], "source": [ @@ -1231,6 +1360,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 269, "metadata": {}, "outputs": [], "source": [ @@ -1240,6 +1370,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 271, "metadata": {}, "outputs": [], "source": [ @@ -1249,6 +1380,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 273, "metadata": {}, "outputs": [], "source": [ @@ -1259,6 +1391,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 275, "metadata": {}, "outputs": [], "source": [ @@ -1267,6 +1400,7 @@ }, { "cell_type": "markdown", + "idx_": 276, "metadata": {}, "source": [ "### Sidebar: fastai's Tabular Classes" @@ -1274,6 +1408,7 @@ }, { "cell_type": "markdown", + "idx_": 278, "metadata": {}, "source": [ "### End sidebar" @@ -1281,6 +1416,7 @@ }, { "cell_type": "markdown", + "idx_": 280, "metadata": {}, "source": [ "## Ensembling" @@ -1289,6 +1425,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 282, "metadata": {}, "outputs": [], "source": [ @@ -1299,6 +1436,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 284, "metadata": {}, "outputs": [], "source": [ @@ -1307,6 +1445,7 @@ }, { "cell_type": "markdown", + "idx_": 286, "metadata": {}, "source": [ "### Boosting" @@ -1314,6 +1453,7 @@ }, { "cell_type": "markdown", + "idx_": 289, "metadata": {}, "source": [ "### Combining Embeddings with Other Methods" @@ -1321,6 +1461,7 @@ }, { "cell_type": "markdown", + "idx_": 293, "metadata": {}, "source": [ "## Conclusion: Our Advice for Tabular Modeling" @@ -1328,6 +1469,7 @@ }, { "cell_type": "markdown", + "idx_": 295, "metadata": {}, "source": [ "## Questionnaire" @@ -1335,6 +1477,7 @@ }, { "cell_type": "markdown", + "idx_": 296, "metadata": {}, "source": [ "1. What is a continuous variable?\n", @@ -1375,6 +1518,7 @@ }, { "cell_type": "markdown", + "idx_": 297, "metadata": {}, "source": [ "### Further Research" @@ -1382,6 +1526,7 @@ }, { "cell_type": "markdown", + "idx_": 298, "metadata": {}, "source": [ "1. Pick a competition on Kaggle with tabular data (current or past) and try to adapt the techniques seen in this chapter to get the best possible results. Compare your results to the private leaderboard.\n", @@ -1393,6 +1538,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 299, "metadata": {}, "outputs": [], "source": [] @@ -1400,11 +1546,12 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 4, + "path_": "09_tabular.ipynb" } diff --git a/clean/10_nlp.ipynb b/clean/10_nlp.ipynb index a1046c6..82c2dae 100644 --- a/clean/10_nlp.ipynb +++ b/clean/10_nlp.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -25,6 +27,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# NLP Deep Dive: RNNs" @@ -32,6 +35,7 @@ }, { "cell_type": "markdown", + "idx_": 9, "metadata": {}, "source": [ "## Text Preprocessing" @@ -39,6 +43,7 @@ }, { "cell_type": "markdown", + "idx_": 12, "metadata": {}, "source": [ "### Tokenization" @@ -46,6 +51,7 @@ }, { "cell_type": "markdown", + "idx_": 15, "metadata": {}, "source": [ "### Word Tokenization with fastai" @@ -54,6 +60,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -64,6 +71,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 19, "metadata": {}, "outputs": [], "source": [ @@ -73,6 +81,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 21, "metadata": {}, "outputs": [], "source": [ @@ -82,6 +91,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 23, "metadata": {}, "outputs": [], "source": [ @@ -93,6 +103,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -102,6 +113,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -112,6 +124,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -121,6 +134,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 32, "metadata": {}, "outputs": [], "source": [ @@ -129,6 +143,7 @@ }, { "cell_type": "markdown", + "idx_": 34, "metadata": {}, "source": [ "### Subword Tokenization" @@ -137,6 +152,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -146,6 +162,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -158,6 +175,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -167,6 +185,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -176,6 +195,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 44, "metadata": {}, "outputs": [], "source": [ @@ -184,6 +204,7 @@ }, { "cell_type": "markdown", + "idx_": 47, "metadata": {}, "source": [ "### Numericalization with fastai" @@ -192,6 +213,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -202,6 +224,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -212,6 +235,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 53, "metadata": {}, "outputs": [], "source": [ @@ -223,6 +247,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 55, "metadata": {}, "outputs": [], "source": [ @@ -232,6 +257,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 57, "metadata": {}, "outputs": [], "source": [ @@ -240,6 +266,7 @@ }, { "cell_type": "markdown", + "idx_": 59, "metadata": {}, "source": [ "### Putting Our Texts into Batches for a Language Model" @@ -248,6 +275,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 61, "metadata": {}, "outputs": [], "source": [ @@ -262,6 +290,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 63, "metadata": {}, "outputs": [], "source": [ @@ -274,6 +303,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -286,6 +316,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -298,6 +329,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -307,6 +339,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -316,6 +349,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -326,6 +360,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -335,6 +370,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 77, "metadata": {}, "outputs": [], "source": [ @@ -343,6 +379,7 @@ }, { "cell_type": "markdown", + "idx_": 79, "metadata": {}, "source": [ "## Training a Text Classifier" @@ -350,6 +387,7 @@ }, { "cell_type": "markdown", + "idx_": 81, "metadata": {}, "source": [ "### Language Model Using DataBlock" @@ -358,6 +396,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -372,6 +411,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 85, "metadata": {}, "outputs": [], "source": [ @@ -380,6 +420,7 @@ }, { "cell_type": "markdown", + "idx_": 87, "metadata": {}, "source": [ "### Fine-Tuning the Language Model" @@ -388,6 +429,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 89, "metadata": {}, "outputs": [], "source": [ @@ -399,6 +441,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 93, "metadata": {}, "outputs": [], "source": [ @@ -407,6 +450,7 @@ }, { "cell_type": "markdown", + "idx_": 95, "metadata": {}, "source": [ "### Saving and Loading Models" @@ -415,6 +459,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 97, "metadata": {}, "outputs": [], "source": [ @@ -424,6 +469,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 99, "metadata": {}, "outputs": [], "source": [ @@ -433,6 +479,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 101, "metadata": {}, "outputs": [], "source": [ @@ -443,6 +490,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 103, "metadata": {}, "outputs": [], "source": [ @@ -451,6 +499,7 @@ }, { "cell_type": "markdown", + "idx_": 106, "metadata": {}, "source": [ "### Text Generation" @@ -459,6 +508,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 108, "metadata": {}, "outputs": [], "source": [ @@ -472,6 +522,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 109, "metadata": {}, "outputs": [], "source": [ @@ -480,6 +531,7 @@ }, { "cell_type": "markdown", + "idx_": 111, "metadata": {}, "source": [ "### Creating the Classifier DataLoaders" @@ -488,6 +540,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 113, "metadata": {}, "outputs": [], "source": [ @@ -502,6 +555,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 115, "metadata": {}, "outputs": [], "source": [ @@ -511,6 +565,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 117, "metadata": {}, "outputs": [], "source": [ @@ -520,6 +575,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 119, "metadata": {}, "outputs": [], "source": [ @@ -529,6 +585,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 121, "metadata": {}, "outputs": [], "source": [ @@ -539,6 +596,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 123, "metadata": {}, "outputs": [], "source": [ @@ -547,6 +605,7 @@ }, { "cell_type": "markdown", + "idx_": 124, "metadata": {}, "source": [ "### Fine-Tuning the Classifier" @@ -555,6 +614,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 126, "metadata": {}, "outputs": [], "source": [ @@ -564,6 +624,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 128, "metadata": {}, "outputs": [], "source": [ @@ -574,6 +635,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 130, "metadata": {}, "outputs": [], "source": [ @@ -584,6 +646,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 132, "metadata": {}, "outputs": [], "source": [ @@ -593,6 +656,7 @@ }, { "cell_type": "markdown", + "idx_": 134, "metadata": {}, "source": [ "## Disinformation and Language Models" @@ -600,6 +664,7 @@ }, { "cell_type": "markdown", + "idx_": 142, "metadata": {}, "source": [ "## Conclusion" @@ -607,6 +672,7 @@ }, { "cell_type": "markdown", + "idx_": 144, "metadata": {}, "source": [ "## Questionnaire" @@ -614,6 +680,7 @@ }, { "cell_type": "markdown", + "idx_": 145, "metadata": {}, "source": [ "1. What is \"self-supervised learning\"?\n", @@ -642,6 +709,7 @@ }, { "cell_type": "markdown", + "idx_": 146, "metadata": {}, "source": [ "### Further Research" @@ -649,6 +717,7 @@ }, { "cell_type": "markdown", + "idx_": 147, "metadata": {}, "source": [ "1. See what you can learn about language models and disinformation. What are the best language models today? Take a look at some of their outputs. Do you find them convincing? How could a bad actor best use such a model to create conflict and uncertainty?\n", @@ -658,6 +727,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 148, "metadata": {}, "outputs": [], "source": [] @@ -668,11 +738,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 2, + "path_": "10_nlp.ipynb" } diff --git a/clean/11_midlevel_data.ipynb b/clean/11_midlevel_data.ipynb index 0b8c77d..d22437b 100644 --- a/clean/11_midlevel_data.ipynb +++ b/clean/11_midlevel_data.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -25,6 +27,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# Data Munging with fastai's Mid-Level API" @@ -32,6 +35,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## Going Deeper into fastai's Layered API" @@ -40,6 +44,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -51,6 +56,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -65,6 +71,7 @@ }, { "cell_type": "markdown", + "idx_": 12, "metadata": {}, "source": [ "### Transforms" @@ -73,6 +80,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 14, "metadata": {}, "outputs": [], "source": [ @@ -83,6 +91,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 16, "metadata": {}, "outputs": [], "source": [ @@ -95,6 +104,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -107,6 +117,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 20, "metadata": {}, "outputs": [], "source": [ @@ -116,6 +127,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 22, "metadata": {}, "outputs": [], "source": [ @@ -125,6 +137,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 24, "metadata": {}, "outputs": [], "source": [ @@ -133,6 +146,7 @@ }, { "cell_type": "markdown", + "idx_": 25, "metadata": {}, "source": [ "### Writing Your Own Transform" @@ -141,6 +155,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -152,6 +167,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -163,6 +179,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -175,6 +192,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -188,6 +206,7 @@ }, { "cell_type": "markdown", + "idx_": 35, "metadata": {}, "source": [ "### Pipeline" @@ -196,6 +215,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 37, "metadata": {}, "outputs": [], "source": [ @@ -206,6 +226,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -214,6 +235,7 @@ }, { "cell_type": "markdown", + "idx_": 41, "metadata": {}, "source": [ "## TfmdLists and Datasets: Transformed Collections" @@ -221,6 +243,7 @@ }, { "cell_type": "markdown", + "idx_": 43, "metadata": {}, "source": [ "### TfmdLists" @@ -229,6 +252,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 45, "metadata": {}, "outputs": [], "source": [ @@ -238,6 +262,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 47, "metadata": {}, "outputs": [], "source": [ @@ -247,6 +272,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -256,6 +282,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -265,6 +292,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 53, "metadata": {}, "outputs": [], "source": [ @@ -277,6 +305,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 55, "metadata": {}, "outputs": [], "source": [ @@ -286,6 +315,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 57, "metadata": {}, "outputs": [], "source": [ @@ -296,6 +326,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 59, "metadata": {}, "outputs": [], "source": [ @@ -307,6 +338,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 61, "metadata": {}, "outputs": [], "source": [ @@ -316,6 +348,7 @@ }, { "cell_type": "markdown", + "idx_": 63, "metadata": {}, "source": [ "### Datasets" @@ -324,6 +357,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -337,6 +371,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -350,6 +385,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -360,6 +396,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -369,6 +406,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 74, "metadata": {}, "outputs": [], "source": [ @@ -382,6 +420,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 76, "metadata": {}, "outputs": [], "source": [ @@ -396,6 +435,7 @@ }, { "cell_type": "markdown", + "idx_": 78, "metadata": {}, "source": [ "## Applying the Mid-Level Data API: SiamesePair" @@ -404,6 +444,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 80, "metadata": {}, "outputs": [], "source": [ @@ -415,6 +456,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 82, "metadata": {}, "outputs": [], "source": [ @@ -434,6 +476,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 84, "metadata": {}, "outputs": [], "source": [ @@ -445,6 +488,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 86, "metadata": {}, "outputs": [], "source": [ @@ -456,6 +500,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 88, "metadata": {}, "outputs": [], "source": [ @@ -466,6 +511,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 90, "metadata": {}, "outputs": [], "source": [ @@ -476,6 +522,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 92, "metadata": {}, "outputs": [], "source": [ @@ -503,6 +550,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -514,6 +562,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -524,6 +573,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 98, "metadata": {}, "outputs": [], "source": [ @@ -533,6 +583,7 @@ }, { "cell_type": "markdown", + "idx_": 101, "metadata": {}, "source": [ "## Conclusion" @@ -540,6 +591,7 @@ }, { "cell_type": "markdown", + "idx_": 103, "metadata": {}, "source": [ "## Questionnaire" @@ -547,6 +599,7 @@ }, { "cell_type": "markdown", + "idx_": 104, "metadata": {}, "source": [ "1. Why do we say that fastai has a \"layered\" API? What does it mean?\n", @@ -568,6 +621,7 @@ }, { "cell_type": "markdown", + "idx_": 105, "metadata": {}, "source": [ "### Further Research" @@ -575,6 +629,7 @@ }, { "cell_type": "markdown", + "idx_": 106, "metadata": {}, "source": [ "1. Use the mid-level API to prepare the data in `DataLoaders` on your own datasets. Try this with the Pet dataset and the Adult dataset from Chapter 1.\n", @@ -583,6 +638,7 @@ }, { "cell_type": "markdown", + "idx_": 107, "metadata": {}, "source": [ "## Understanding fastai's Applications: Wrap Up" @@ -590,6 +646,7 @@ }, { "cell_type": "markdown", + "idx_": 108, "metadata": {}, "source": [ "Congratulations—you've completed all of the chapters in this book that cover the key practical parts of training models and using deep learning! You know how to use all of fastai's built-in applications, and how to customize them using the data block API and loss functions. You even know how to create a neural network from scratch, and train it! (And hopefully you now know some of the questions to ask to make sure your creations help improve society too.)\n", @@ -602,6 +659,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 109, "metadata": {}, "outputs": [], "source": [] @@ -612,11 +670,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 2, + "path_": "11_midlevel_data.ipynb" } diff --git a/clean/12_nlp_dive.ipynb b/clean/12_nlp_dive.ipynb index 8756ff7..31bd04f 100644 --- a/clean/12_nlp_dive.ipynb +++ b/clean/12_nlp_dive.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -24,6 +26,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# A Language Model from Scratch" @@ -31,6 +34,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## The Data" @@ -39,6 +43,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -49,6 +54,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 10, "metadata": {}, "outputs": [], "source": [ @@ -59,6 +65,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -68,6 +75,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -80,6 +88,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -90,6 +99,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -100,6 +110,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 19, "metadata": {}, "outputs": [], "source": [ @@ -110,6 +121,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 21, "metadata": {}, "outputs": [], "source": [ @@ -120,6 +132,7 @@ }, { "cell_type": "markdown", + "idx_": 23, "metadata": {}, "source": [ "## Our First Language Model from Scratch" @@ -128,6 +141,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -137,6 +151,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -147,6 +162,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -157,6 +173,7 @@ }, { "cell_type": "markdown", + "idx_": 31, "metadata": {}, "source": [ "### Our Language Model in PyTorch" @@ -165,6 +182,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -186,6 +204,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -197,6 +216,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -210,6 +230,7 @@ }, { "cell_type": "markdown", + "idx_": 47, "metadata": {}, "source": [ "### Our First Recurrent Neural Network" @@ -218,6 +239,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -238,6 +260,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -248,6 +271,7 @@ }, { "cell_type": "markdown", + "idx_": 58, "metadata": {}, "source": [ "## Improving the RNN" @@ -255,6 +279,7 @@ }, { "cell_type": "markdown", + "idx_": 60, "metadata": {}, "source": [ "### Maintaining the State of an RNN" @@ -263,6 +288,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 62, "metadata": {}, "outputs": [], "source": [ @@ -287,6 +313,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 66, "metadata": {}, "outputs": [], "source": [ @@ -297,6 +324,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 68, "metadata": {}, "outputs": [], "source": [ @@ -310,6 +338,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 70, "metadata": {}, "outputs": [], "source": [ @@ -323,6 +352,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 72, "metadata": {}, "outputs": [], "source": [ @@ -333,6 +363,7 @@ }, { "cell_type": "markdown", + "idx_": 74, "metadata": {}, "source": [ "### Creating More Signal" @@ -341,6 +372,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 78, "metadata": {}, "outputs": [], "source": [ @@ -356,6 +388,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 80, "metadata": {}, "outputs": [], "source": [ @@ -365,6 +398,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 82, "metadata": {}, "outputs": [], "source": [ @@ -390,6 +424,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 84, "metadata": {}, "outputs": [], "source": [ @@ -400,6 +435,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 86, "metadata": {}, "outputs": [], "source": [ @@ -410,6 +446,7 @@ }, { "cell_type": "markdown", + "idx_": 88, "metadata": {}, "source": [ "## Multilayer RNNs" @@ -417,6 +454,7 @@ }, { "cell_type": "markdown", + "idx_": 94, "metadata": {}, "source": [ "### The Model" @@ -425,6 +463,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -446,6 +485,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 97, "metadata": {}, "outputs": [], "source": [ @@ -457,6 +497,7 @@ }, { "cell_type": "markdown", + "idx_": 99, "metadata": {}, "source": [ "### Exploding or Disappearing Activations" @@ -464,6 +505,7 @@ }, { "cell_type": "markdown", + "idx_": 103, "metadata": {}, "source": [ "## LSTM" @@ -471,6 +513,7 @@ }, { "cell_type": "markdown", + "idx_": 105, "metadata": {}, "source": [ "### Building an LSTM from Scratch" @@ -479,6 +522,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 108, "metadata": {}, "outputs": [], "source": [ @@ -505,6 +549,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 110, "metadata": {}, "outputs": [], "source": [ @@ -528,6 +573,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 112, "metadata": {}, "outputs": [], "source": [ @@ -537,6 +583,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 113, "metadata": {}, "outputs": [], "source": [ @@ -545,6 +592,7 @@ }, { "cell_type": "markdown", + "idx_": 115, "metadata": {}, "source": [ "### Training a Language Model Using LSTMs" @@ -553,6 +601,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 117, "metadata": {}, "outputs": [], "source": [ @@ -575,6 +624,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 118, "metadata": {}, "outputs": [], "source": [ @@ -586,6 +636,7 @@ }, { "cell_type": "markdown", + "idx_": 120, "metadata": {}, "source": [ "## Regularizing an LSTM" @@ -593,6 +644,7 @@ }, { "cell_type": "markdown", + "idx_": 122, "metadata": {}, "source": [ "### Dropout" @@ -601,6 +653,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 126, "metadata": {}, "outputs": [], "source": [ @@ -614,6 +667,7 @@ }, { "cell_type": "markdown", + "idx_": 129, "metadata": {}, "source": [ "### Activation Regularization and Temporal Activation Regularization" @@ -621,6 +675,7 @@ }, { "cell_type": "markdown", + "idx_": 132, "metadata": {}, "source": [ "### Training a Weight-Tied Regularized LSTM" @@ -629,6 +684,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 134, "metadata": {}, "outputs": [], "source": [ @@ -654,6 +710,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 136, "metadata": {}, "outputs": [], "source": [ @@ -665,6 +722,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 138, "metadata": {}, "outputs": [], "source": [ @@ -675,6 +733,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 140, "metadata": {}, "outputs": [], "source": [ @@ -683,6 +742,7 @@ }, { "cell_type": "markdown", + "idx_": 142, "metadata": {}, "source": [ "## Conclusion" @@ -690,6 +750,7 @@ }, { "cell_type": "markdown", + "idx_": 144, "metadata": {}, "source": [ "## Questionnaire" @@ -697,6 +758,7 @@ }, { "cell_type": "markdown", + "idx_": 145, "metadata": {}, "source": [ "1. If the dataset for your project is so big and complicated that working with it takes a significant amount of time, what should you do?\n", @@ -742,6 +804,7 @@ }, { "cell_type": "markdown", + "idx_": 146, "metadata": {}, "source": [ "### Further Research" @@ -749,6 +812,7 @@ }, { "cell_type": "markdown", + "idx_": 147, "metadata": {}, "source": [ "1. In ` LMModel2`, why can `forward` start with `h=0`? Why don't we need to say `h=torch.zeros(...)`?\n", @@ -760,6 +824,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 148, "metadata": {}, "outputs": [], "source": [] @@ -770,11 +835,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 2, + "path_": "12_nlp_dive.ipynb" } diff --git a/clean/13_convolutions.ipynb b/clean/13_convolutions.ipynb index deea05a..9447abb 100644 --- a/clean/13_convolutions.ipynb +++ b/clean/13_convolutions.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -27,6 +29,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# Convolutional Neural Networks" @@ -34,6 +37,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## The Magic of Convolutions" @@ -42,6 +46,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -53,6 +58,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -62,6 +68,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 14, "metadata": {}, "outputs": [], "source": [ @@ -72,6 +79,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -82,6 +90,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -92,6 +101,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -101,6 +111,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 20, "metadata": {}, "outputs": [], "source": [ @@ -111,6 +122,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 23, "metadata": {}, "outputs": [], "source": [ @@ -120,6 +132,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -129,6 +142,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -139,6 +153,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 28, "metadata": {}, "outputs": [], "source": [ @@ -147,6 +162,7 @@ }, { "cell_type": "markdown", + "idx_": 30, "metadata": {}, "source": [ "### Mapping a Convolution Kernel" @@ -155,6 +171,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 34, "metadata": {}, "outputs": [], "source": [ @@ -164,6 +181,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 37, "metadata": {}, "outputs": [], "source": [ @@ -176,6 +194,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -190,6 +209,7 @@ }, { "cell_type": "markdown", + "idx_": 44, "metadata": {}, "source": [ "### Convolutions in PyTorch" @@ -198,6 +218,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 46, "metadata": {}, "outputs": [], "source": [ @@ -215,6 +236,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 48, "metadata": {}, "outputs": [], "source": [ @@ -231,6 +253,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 50, "metadata": {}, "outputs": [], "source": [ @@ -240,6 +263,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 52, "metadata": {}, "outputs": [], "source": [ @@ -249,6 +273,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 54, "metadata": {}, "outputs": [], "source": [ @@ -258,6 +283,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 55, "metadata": {}, "outputs": [], "source": [ @@ -268,6 +294,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 57, "metadata": {}, "outputs": [], "source": [ @@ -276,6 +303,7 @@ }, { "cell_type": "markdown", + "idx_": 60, "metadata": {}, "source": [ "### Strides and Padding" @@ -283,6 +311,7 @@ }, { "cell_type": "markdown", + "idx_": 69, "metadata": {}, "source": [ "### Understanding the Convolution Equations" @@ -290,6 +319,7 @@ }, { "cell_type": "markdown", + "idx_": 84, "metadata": {}, "source": [ "## Our First Convolutional Neural Network" @@ -297,6 +327,7 @@ }, { "cell_type": "markdown", + "idx_": 86, "metadata": {}, "source": [ "### Creating the CNN" @@ -305,6 +336,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 88, "metadata": {}, "outputs": [], "source": [ @@ -318,6 +350,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 90, "metadata": {}, "outputs": [], "source": [ @@ -327,6 +360,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 92, "metadata": {}, "outputs": [], "source": [ @@ -340,6 +374,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -349,6 +384,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -361,6 +397,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 101, "metadata": {}, "outputs": [], "source": [ @@ -377,6 +414,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 104, "metadata": {}, "outputs": [], "source": [ @@ -386,6 +424,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 106, "metadata": {}, "outputs": [], "source": [ @@ -395,6 +434,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 108, "metadata": {}, "outputs": [], "source": [ @@ -404,6 +444,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 110, "metadata": {}, "outputs": [], "source": [ @@ -412,6 +453,7 @@ }, { "cell_type": "markdown", + "idx_": 112, "metadata": {}, "source": [ "### Understanding Convolution Arithmetic" @@ -420,6 +462,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 114, "metadata": {}, "outputs": [], "source": [ @@ -430,6 +473,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 116, "metadata": {}, "outputs": [], "source": [ @@ -439,6 +483,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 118, "metadata": {}, "outputs": [], "source": [ @@ -447,6 +492,7 @@ }, { "cell_type": "markdown", + "idx_": 121, "metadata": {}, "source": [ "### Receptive Fields" @@ -454,6 +500,7 @@ }, { "cell_type": "markdown", + "idx_": 128, "metadata": {}, "source": [ "### A Note About Twitter" @@ -461,6 +508,7 @@ }, { "cell_type": "markdown", + "idx_": 139, "metadata": {}, "source": [ "## Color Images" @@ -469,6 +517,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 141, "metadata": {}, "outputs": [], "source": [ @@ -479,6 +528,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 142, "metadata": {}, "outputs": [], "source": [ @@ -488,6 +538,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 144, "metadata": {}, "outputs": [], "source": [ @@ -498,6 +549,7 @@ }, { "cell_type": "markdown", + "idx_": 152, "metadata": {}, "source": [ "## Improving Training Stability" @@ -506,6 +558,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 154, "metadata": {}, "outputs": [], "source": [ @@ -515,6 +568,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 155, "metadata": {}, "outputs": [], "source": [ @@ -525,6 +579,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 156, "metadata": {}, "outputs": [], "source": [ @@ -534,6 +589,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 158, "metadata": {}, "outputs": [], "source": [ @@ -552,6 +608,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 160, "metadata": {}, "outputs": [], "source": [ @@ -560,6 +617,7 @@ }, { "cell_type": "markdown", + "idx_": 162, "metadata": {}, "source": [ "### A Simple Baseline" @@ -568,6 +626,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 164, "metadata": {}, "outputs": [], "source": [ @@ -580,6 +639,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 166, "metadata": {}, "outputs": [], "source": [ @@ -597,6 +657,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 168, "metadata": {}, "outputs": [], "source": [ @@ -606,6 +667,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 170, "metadata": {}, "outputs": [], "source": [ @@ -619,6 +681,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 171, "metadata": {}, "outputs": [], "source": [ @@ -628,6 +691,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 173, "metadata": {}, "outputs": [], "source": [ @@ -637,6 +701,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 175, "metadata": {}, "outputs": [], "source": [ @@ -645,6 +710,7 @@ }, { "cell_type": "markdown", + "idx_": 177, "metadata": {}, "source": [ "### Increase Batch Size" @@ -653,6 +719,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 179, "metadata": {}, "outputs": [], "source": [ @@ -662,6 +729,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 180, "metadata": {}, "outputs": [], "source": [ @@ -671,6 +739,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 182, "metadata": {}, "outputs": [], "source": [ @@ -679,6 +748,7 @@ }, { "cell_type": "markdown", + "idx_": 184, "metadata": {}, "source": [ "### 1cycle Training" @@ -687,6 +757,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 186, "metadata": {}, "outputs": [], "source": [ @@ -700,6 +771,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 187, "metadata": {}, "outputs": [], "source": [ @@ -709,6 +781,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 189, "metadata": {}, "outputs": [], "source": [ @@ -718,6 +791,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 191, "metadata": {}, "outputs": [], "source": [ @@ -727,6 +801,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 193, "metadata": {}, "outputs": [], "source": [ @@ -736,6 +811,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 200, "metadata": {}, "outputs": [], "source": [ @@ -744,6 +820,7 @@ }, { "cell_type": "markdown", + "idx_": 202, "metadata": {}, "source": [ "### Batch Normalization" @@ -752,6 +829,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 206, "metadata": {}, "outputs": [], "source": [ @@ -765,6 +843,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 208, "metadata": {}, "outputs": [], "source": [ @@ -774,6 +853,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 210, "metadata": {}, "outputs": [], "source": [ @@ -783,6 +863,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 212, "metadata": {}, "outputs": [], "source": [ @@ -791,6 +872,7 @@ }, { "cell_type": "markdown", + "idx_": 214, "metadata": {}, "source": [ "## Conclusions" @@ -798,6 +880,7 @@ }, { "cell_type": "markdown", + "idx_": 216, "metadata": {}, "source": [ "## Questionnaire" @@ -805,6 +888,7 @@ }, { "cell_type": "markdown", + "idx_": 217, "metadata": {}, "source": [ "1. What is a \"feature\"?\n", @@ -851,6 +935,7 @@ }, { "cell_type": "markdown", + "idx_": 218, "metadata": {}, "source": [ "### Further Research" @@ -858,6 +943,7 @@ }, { "cell_type": "markdown", + "idx_": 219, "metadata": {}, "source": [ "1. What features other than edge detectors have been used in computer vision (especially before deep learning became popular)?\n", @@ -868,6 +954,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 220, "metadata": {}, "outputs": [], "source": [] @@ -878,11 +965,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 4, + "path_": "13_convolutions.ipynb" } diff --git a/clean/14_resnet.ipynb b/clean/14_resnet.ipynb index 7a56672..ca6b9b3 100644 --- a/clean/14_resnet.ipynb +++ b/clean/14_resnet.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -24,6 +26,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# ResNets" @@ -31,6 +34,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## Going Back to Imagenette" @@ -39,6 +43,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -56,6 +61,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 8, "metadata": {}, "outputs": [], "source": [ @@ -65,6 +71,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -74,6 +81,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -83,6 +91,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -102,6 +111,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -115,6 +125,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -124,6 +135,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 20, "metadata": {}, "outputs": [], "source": [ @@ -132,6 +144,7 @@ }, { "cell_type": "markdown", + "idx_": 22, "metadata": {}, "source": [ "## Building a Modern CNN: ResNet" @@ -139,6 +152,7 @@ }, { "cell_type": "markdown", + "idx_": 24, "metadata": {}, "source": [ "### Skip Connections" @@ -147,6 +161,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -162,6 +177,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 35, "metadata": {}, "outputs": [], "source": [ @@ -174,6 +190,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -190,6 +207,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -200,6 +218,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -209,6 +228,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -219,6 +239,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -228,6 +249,7 @@ }, { "cell_type": "markdown", + "idx_": 46, "metadata": {}, "source": [ "### A State-of-the-Art ResNet" @@ -236,6 +258,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 50, "metadata": {}, "outputs": [], "source": [ @@ -249,6 +272,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -258,6 +282,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 55, "metadata": {}, "outputs": [], "source": [ @@ -283,6 +308,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 57, "metadata": {}, "outputs": [], "source": [ @@ -292,6 +318,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 59, "metadata": {}, "outputs": [], "source": [ @@ -301,6 +328,7 @@ }, { "cell_type": "markdown", + "idx_": 61, "metadata": {}, "source": [ "### Bottleneck Layers" @@ -309,6 +337,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -322,6 +351,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -331,6 +361,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -340,6 +371,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 70, "metadata": {}, "outputs": [], "source": [ @@ -349,6 +381,7 @@ }, { "cell_type": "markdown", + "idx_": 72, "metadata": {}, "source": [ "## Conclusion" @@ -356,6 +389,7 @@ }, { "cell_type": "markdown", + "idx_": 74, "metadata": {}, "source": [ "## Questionnaire" @@ -363,6 +397,7 @@ }, { "cell_type": "markdown", + "idx_": 75, "metadata": {}, "source": [ "1. How did we get to a single vector of activations in the CNNs used for MNIST in previous chapters? Why isn't that suitable for Imagenette?\n", @@ -391,6 +426,7 @@ }, { "cell_type": "markdown", + "idx_": 76, "metadata": {}, "source": [ "### Further Research" @@ -398,6 +434,7 @@ }, { "cell_type": "markdown", + "idx_": 77, "metadata": {}, "source": [ "1. Try creating a fully convolutional net with adaptive average pooling for MNIST (note that you'll need fewer stride-2 layers). How does it compare to a network without such a pooling layer?\n", @@ -409,6 +446,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 78, "metadata": {}, "outputs": [], "source": [] @@ -419,11 +457,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 4, + "path_": "14_resnet.ipynb" } diff --git a/clean/15_arch_details.ipynb b/clean/15_arch_details.ipynb index 86c1adf..678c23b 100644 --- a/clean/15_arch_details.ipynb +++ b/clean/15_arch_details.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -24,6 +26,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# Application Architectures Deep Dive" @@ -31,6 +34,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## Computer Vision" @@ -38,6 +42,7 @@ }, { "cell_type": "markdown", + "idx_": 7, "metadata": {}, "source": [ "### vision_learner" @@ -46,6 +51,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -55,6 +61,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 12, "metadata": {}, "outputs": [], "source": [ @@ -63,6 +70,7 @@ }, { "cell_type": "markdown", + "idx_": 17, "metadata": {}, "source": [ "### unet_learner" @@ -70,6 +78,7 @@ }, { "cell_type": "markdown", + "idx_": 23, "metadata": {}, "source": [ "### A Siamese Network" @@ -78,6 +87,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 24, "metadata": {}, "outputs": [], "source": [ @@ -129,6 +139,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 26, "metadata": {}, "outputs": [], "source": [ @@ -144,6 +155,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 28, "metadata": {}, "outputs": [], "source": [ @@ -153,6 +165,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 30, "metadata": {}, "outputs": [], "source": [ @@ -162,6 +175,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 32, "metadata": {}, "outputs": [], "source": [ @@ -171,6 +185,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 34, "metadata": {}, "outputs": [], "source": [ @@ -181,6 +196,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -191,6 +207,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -202,6 +219,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -211,6 +229,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -220,6 +239,7 @@ }, { "cell_type": "markdown", + "idx_": 45, "metadata": {}, "source": [ "## Natural Language Processing" @@ -227,6 +247,7 @@ }, { "cell_type": "markdown", + "idx_": 49, "metadata": {}, "source": [ "## Tabular" @@ -234,6 +255,7 @@ }, { "cell_type": "markdown", + "idx_": 52, "metadata": {}, "source": [ "## Wrapping Up Architectures" @@ -241,6 +263,7 @@ }, { "cell_type": "markdown", + "idx_": 56, "metadata": {}, "source": [ "## Questionnaire" @@ -248,6 +271,7 @@ }, { "cell_type": "markdown", + "idx_": 57, "metadata": {}, "source": [ "1. What is the \"head\" of a neural net?\n", @@ -272,6 +296,7 @@ }, { "cell_type": "markdown", + "idx_": 58, "metadata": {}, "source": [ "### Further Research" @@ -279,6 +304,7 @@ }, { "cell_type": "markdown", + "idx_": 59, "metadata": {}, "source": [ "1. Write your own custom head and try training the pet recognizer with it. See if you can get a better result than fastai's default.\n", @@ -291,6 +317,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 60, "metadata": {}, "outputs": [], "source": [] @@ -301,11 +328,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 2, + "path_": "15_arch_details.ipynb" } diff --git a/clean/16_accel_sgd.ipynb b/clean/16_accel_sgd.ipynb index e3e9190..7820541 100644 --- a/clean/16_accel_sgd.ipynb +++ b/clean/16_accel_sgd.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -24,6 +26,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# The Training Process" @@ -31,6 +34,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## Establishing a Baseline" @@ -39,6 +43,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -56,6 +61,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 8, "metadata": {}, "outputs": [], "source": [ @@ -65,6 +71,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 10, "metadata": {}, "outputs": [], "source": [ @@ -76,6 +83,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 12, "metadata": {}, "outputs": [], "source": [ @@ -86,6 +94,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 14, "metadata": {}, "outputs": [], "source": [ @@ -95,6 +104,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 16, "metadata": {}, "outputs": [], "source": [ @@ -104,6 +114,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -112,6 +123,7 @@ }, { "cell_type": "markdown", + "idx_": 20, "metadata": {}, "source": [ "## A Generic Optimizer" @@ -120,6 +132,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 23, "metadata": {}, "outputs": [], "source": [ @@ -129,6 +142,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -138,6 +152,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -147,6 +162,7 @@ }, { "cell_type": "markdown", + "idx_": 29, "metadata": {}, "source": [ "## Momentum" @@ -155,6 +171,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -174,6 +191,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -197,6 +215,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -208,6 +227,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -217,6 +237,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -226,6 +247,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -236,6 +258,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -244,6 +267,7 @@ }, { "cell_type": "markdown", + "idx_": 44, "metadata": {}, "source": [ "## RMSProp" @@ -252,6 +276,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 47, "metadata": {}, "outputs": [], "source": [ @@ -263,6 +288,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -277,6 +303,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -286,6 +313,7 @@ }, { "cell_type": "markdown", + "idx_": 53, "metadata": {}, "source": [ "## Adam" @@ -293,6 +321,7 @@ }, { "cell_type": "markdown", + "idx_": 55, "metadata": {}, "source": [ "## Decoupled Weight Decay" @@ -300,6 +329,7 @@ }, { "cell_type": "markdown", + "idx_": 57, "metadata": {}, "source": [ "## Callbacks" @@ -307,6 +337,7 @@ }, { "cell_type": "markdown", + "idx_": 66, "metadata": {}, "source": [ "### Creating a Callback" @@ -315,6 +346,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -326,6 +358,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -349,6 +382,7 @@ }, { "cell_type": "markdown", + "idx_": 76, "metadata": {}, "source": [ "### Callback Ordering and Exceptions" @@ -357,6 +391,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 78, "metadata": {}, "outputs": [], "source": [ @@ -369,6 +404,7 @@ }, { "cell_type": "markdown", + "idx_": 82, "metadata": {}, "source": [ "## Conclusion" @@ -376,6 +412,7 @@ }, { "cell_type": "markdown", + "idx_": 84, "metadata": {}, "source": [ "## Questionnaire" @@ -383,6 +420,7 @@ }, { "cell_type": "markdown", + "idx_": 85, "metadata": {}, "source": [ "1. What is the equation for a step of SGD, in math or code (as you prefer)?\n", @@ -416,6 +454,7 @@ }, { "cell_type": "markdown", + "idx_": 86, "metadata": {}, "source": [ "### Further Research" @@ -423,6 +462,7 @@ }, { "cell_type": "markdown", + "idx_": 87, "metadata": {}, "source": [ "1. Look up the \"Rectified Adam\" paper, implement it using the general optimizer framework, and try it out. Search for other recent optimizers that work well in practice, and pick one to implement.\n", @@ -433,6 +473,7 @@ }, { "cell_type": "markdown", + "idx_": 88, "metadata": {}, "source": [ "## Foundations of Deep Learning: Wrap up" @@ -440,6 +481,7 @@ }, { "cell_type": "markdown", + "idx_": 89, "metadata": {}, "source": [ "Congratulations, you have made it to the end of the \"foundations of deep learning\" section of the book! You now understand how all of fastai's applications and most important architectures are built, and the recommended ways to train them—and you have all the information you need to build these from scratch. While you probably won't need to create your own training loop, or batchnorm layer, for instance, knowing what is going on behind the scenes is very helpful for debugging, profiling, and deploying your solutions.\n", @@ -452,6 +494,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 90, "metadata": {}, "outputs": [], "source": [] @@ -462,11 +505,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 2, + "path_": "16_accel_sgd.ipynb" } diff --git a/clean/17_foundations.ipynb b/clean/17_foundations.ipynb index 406dcfe..c12fb5d 100644 --- a/clean/17_foundations.ipynb +++ b/clean/17_foundations.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -14,6 +15,7 @@ }, { "cell_type": "markdown", + "idx_": 2, "metadata": {}, "source": [ "# A Neural Net from the Foundations" @@ -21,6 +23,7 @@ }, { "cell_type": "markdown", + "idx_": 4, "metadata": {}, "source": [ "## Building a Neural Net Layer from Scratch" @@ -28,6 +31,7 @@ }, { "cell_type": "markdown", + "idx_": 6, "metadata": {}, "source": [ "### Modeling a Neuron" @@ -35,6 +39,7 @@ }, { "cell_type": "markdown", + "idx_": 9, "metadata": {}, "source": [ "### Matrix Multiplication from Scratch" @@ -43,6 +48,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -53,6 +59,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -70,6 +77,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -80,6 +88,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -89,6 +98,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 19, "metadata": {}, "outputs": [], "source": [ @@ -97,6 +107,7 @@ }, { "cell_type": "markdown", + "idx_": 21, "metadata": {}, "source": [ "### Elementwise Arithmetic" @@ -105,6 +116,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 23, "metadata": {}, "outputs": [], "source": [ @@ -116,6 +128,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -125,6 +138,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -134,6 +148,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -143,6 +158,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -153,6 +169,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -163,6 +180,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 35, "metadata": {}, "outputs": [], "source": [ @@ -179,6 +197,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -187,6 +206,7 @@ }, { "cell_type": "markdown", + "idx_": 38, "metadata": {}, "source": [ "### Broadcasting" @@ -194,6 +214,7 @@ }, { "cell_type": "markdown", + "idx_": 40, "metadata": {}, "source": [ "#### Broadcasting with a scalar" @@ -202,6 +223,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -212,6 +234,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 44, "metadata": {}, "outputs": [], "source": [ @@ -221,6 +244,7 @@ }, { "cell_type": "markdown", + "idx_": 46, "metadata": {}, "source": [ "#### Broadcasting a vector to a matrix" @@ -229,6 +253,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 48, "metadata": {}, "outputs": [], "source": [ @@ -240,6 +265,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -249,6 +275,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -258,6 +285,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 53, "metadata": {}, "outputs": [], "source": [ @@ -268,6 +296,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 55, "metadata": {}, "outputs": [], "source": [ @@ -277,6 +306,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 57, "metadata": {}, "outputs": [], "source": [ @@ -286,6 +316,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 59, "metadata": {}, "outputs": [], "source": [ @@ -297,6 +328,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 61, "metadata": {}, "outputs": [], "source": [ @@ -308,6 +340,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 63, "metadata": {}, "outputs": [], "source": [ @@ -320,6 +353,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -329,6 +363,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -339,6 +374,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -348,6 +384,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -358,6 +395,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -367,6 +405,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -376,6 +415,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 77, "metadata": {}, "outputs": [], "source": [ @@ -393,6 +433,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 78, "metadata": {}, "outputs": [], "source": [ @@ -401,6 +442,7 @@ }, { "cell_type": "markdown", + "idx_": 80, "metadata": {}, "source": [ "#### Broadcasting rules" @@ -408,6 +450,7 @@ }, { "cell_type": "markdown", + "idx_": 83, "metadata": {}, "source": [ "### Einstein Summation" @@ -416,6 +459,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 85, "metadata": {}, "outputs": [], "source": [ @@ -425,6 +469,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 87, "metadata": {}, "outputs": [], "source": [ @@ -433,6 +478,7 @@ }, { "cell_type": "markdown", + "idx_": 90, "metadata": {}, "source": [ "## The Forward and Backward Passes" @@ -440,6 +486,7 @@ }, { "cell_type": "markdown", + "idx_": 92, "metadata": {}, "source": [ "### Defining and Initializing a Layer" @@ -448,6 +495,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -457,6 +505,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -467,6 +516,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 98, "metadata": {}, "outputs": [], "source": [ @@ -479,6 +529,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 100, "metadata": {}, "outputs": [], "source": [ @@ -489,6 +540,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 102, "metadata": {}, "outputs": [], "source": [ @@ -498,6 +550,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 104, "metadata": {}, "outputs": [], "source": [ @@ -509,6 +562,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 106, "metadata": {}, "outputs": [], "source": [ @@ -520,6 +574,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 108, "metadata": {}, "outputs": [], "source": [ @@ -531,6 +586,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 110, "metadata": {}, "outputs": [], "source": [ @@ -540,6 +596,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 112, "metadata": {}, "outputs": [], "source": [ @@ -550,6 +607,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 114, "metadata": {}, "outputs": [], "source": [ @@ -563,6 +621,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 116, "metadata": {}, "outputs": [], "source": [ @@ -573,6 +632,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 118, "metadata": {}, "outputs": [], "source": [ @@ -582,6 +642,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 120, "metadata": {}, "outputs": [], "source": [ @@ -592,6 +653,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 122, "metadata": {}, "outputs": [], "source": [ @@ -603,6 +665,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 124, "metadata": {}, "outputs": [], "source": [ @@ -614,6 +677,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 126, "metadata": {}, "outputs": [], "source": [ @@ -624,6 +688,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 127, "metadata": {}, "outputs": [], "source": [ @@ -636,6 +701,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 129, "metadata": {}, "outputs": [], "source": [ @@ -647,6 +713,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 131, "metadata": {}, "outputs": [], "source": [ @@ -660,6 +727,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 133, "metadata": {}, "outputs": [], "source": [ @@ -670,6 +738,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 135, "metadata": {}, "outputs": [], "source": [ @@ -679,6 +748,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 137, "metadata": {}, "outputs": [], "source": [ @@ -687,6 +757,7 @@ }, { "cell_type": "markdown", + "idx_": 139, "metadata": {}, "source": [ "### Gradients and the Backward Pass" @@ -695,6 +766,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 143, "metadata": {}, "outputs": [], "source": [ @@ -706,6 +778,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 145, "metadata": {}, "outputs": [], "source": [ @@ -717,6 +790,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 147, "metadata": {}, "outputs": [], "source": [ @@ -729,6 +803,7 @@ }, { "cell_type": "markdown", + "idx_": 149, "metadata": {}, "source": [ "### Sidebar: SymPy" @@ -737,6 +812,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 153, "metadata": {}, "outputs": [], "source": [ @@ -747,6 +823,7 @@ }, { "cell_type": "markdown", + "idx_": 155, "metadata": {}, "source": [ "### End sidebar" @@ -755,6 +832,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 157, "metadata": {}, "outputs": [], "source": [ @@ -775,6 +853,7 @@ }, { "cell_type": "markdown", + "idx_": 160, "metadata": {}, "source": [ "### Refactoring the Model" @@ -783,6 +862,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 162, "metadata": {}, "outputs": [], "source": [ @@ -798,6 +878,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 164, "metadata": {}, "outputs": [], "source": [ @@ -818,6 +899,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 165, "metadata": {}, "outputs": [], "source": [ @@ -836,6 +918,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 167, "metadata": {}, "outputs": [], "source": [ @@ -856,6 +939,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 169, "metadata": {}, "outputs": [], "source": [ @@ -865,6 +949,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 171, "metadata": {}, "outputs": [], "source": [ @@ -874,6 +959,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 173, "metadata": {}, "outputs": [], "source": [ @@ -882,6 +968,7 @@ }, { "cell_type": "markdown", + "idx_": 174, "metadata": {}, "source": [ "### Going to PyTorch" @@ -890,6 +977,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 176, "metadata": {}, "outputs": [], "source": [ @@ -907,6 +995,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 178, "metadata": {}, "outputs": [], "source": [ @@ -918,6 +1007,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 179, "metadata": {}, "outputs": [], "source": [ @@ -935,6 +1025,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 180, "metadata": {}, "outputs": [], "source": [ @@ -947,6 +1038,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 182, "metadata": {}, "outputs": [], "source": [ @@ -968,6 +1060,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 184, "metadata": {}, "outputs": [], "source": [ @@ -985,6 +1078,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 186, "metadata": {}, "outputs": [], "source": [ @@ -996,6 +1090,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 188, "metadata": {}, "outputs": [], "source": [ @@ -1012,6 +1107,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 190, "metadata": {}, "outputs": [], "source": [ @@ -1026,6 +1122,7 @@ }, { "cell_type": "markdown", + "idx_": 192, "metadata": {}, "source": [ "## Conclusion" @@ -1033,6 +1130,7 @@ }, { "cell_type": "markdown", + "idx_": 194, "metadata": {}, "source": [ "## Questionnaire" @@ -1040,6 +1138,7 @@ }, { "cell_type": "markdown", + "idx_": 195, "metadata": {}, "source": [ "1. Write the Python code to implement a single neuron.\n", @@ -1086,6 +1185,7 @@ }, { "cell_type": "markdown", + "idx_": 196, "metadata": {}, "source": [ "### Further Research" @@ -1093,6 +1193,7 @@ }, { "cell_type": "markdown", + "idx_": 197, "metadata": {}, "source": [ "1. Implement ReLU as a `torch.autograd.Function` and train a model with it.\n", @@ -1104,6 +1205,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 198, "metadata": {}, "outputs": [], "source": [] @@ -1114,11 +1216,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 2, + "path_": "17_foundations.ipynb" } diff --git a/clean/18_CAM.ipynb b/clean/18_CAM.ipynb index 513f65c..b56ada1 100644 --- a/clean/18_CAM.ipynb +++ b/clean/18_CAM.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -24,6 +26,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# CNN Interpretation with CAM" @@ -31,6 +34,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## CAM and Hooks" @@ -39,6 +43,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -54,6 +59,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -64,6 +70,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -74,6 +81,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -84,6 +92,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -93,6 +102,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -102,6 +112,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 19, "metadata": {}, "outputs": [], "source": [ @@ -111,6 +122,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 21, "metadata": {}, "outputs": [], "source": [ @@ -120,6 +132,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 24, "metadata": {}, "outputs": [], "source": [ @@ -129,6 +142,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -139,6 +153,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -152,6 +167,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -161,6 +177,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -175,6 +192,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -185,6 +203,7 @@ }, { "cell_type": "markdown", + "idx_": 36, "metadata": {}, "source": [ "## Gradient CAM" @@ -193,6 +212,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -207,6 +227,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -222,6 +243,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -232,6 +254,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -244,6 +267,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 45, "metadata": {}, "outputs": [], "source": [ @@ -258,6 +282,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 46, "metadata": {}, "outputs": [], "source": [ @@ -268,6 +293,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 48, "metadata": {}, "outputs": [], "source": [ @@ -279,6 +305,7 @@ }, { "cell_type": "markdown", + "idx_": 49, "metadata": {}, "source": [ "## Conclusion" @@ -286,6 +313,7 @@ }, { "cell_type": "markdown", + "idx_": 51, "metadata": {}, "source": [ "## Questionnaire" @@ -293,6 +321,7 @@ }, { "cell_type": "markdown", + "idx_": 52, "metadata": {}, "source": [ "1. What is a \"hook\" in PyTorch?\n", @@ -312,6 +341,7 @@ }, { "cell_type": "markdown", + "idx_": 53, "metadata": {}, "source": [ "### Further Research" @@ -319,6 +349,7 @@ }, { "cell_type": "markdown", + "idx_": 54, "metadata": {}, "source": [ "1. Try removing `keepdim` and see what happens. Look up this parameter in the PyTorch docs. Why do we need it in this notebook?\n", @@ -328,6 +359,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 55, "metadata": {}, "outputs": [], "source": [] @@ -338,11 +370,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 2, + "path_": "18_CAM.ipynb" } diff --git a/clean/19_learner.ipynb b/clean/19_learner.ipynb index 1b701ad..5195fa3 100644 --- a/clean/19_learner.ipynb +++ b/clean/19_learner.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -24,6 +26,7 @@ }, { "cell_type": "markdown", + "idx_": 2, "metadata": {}, "source": [ "# A fastai Learner from Scratch" @@ -31,6 +34,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## Data" @@ -39,6 +43,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -48,6 +53,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -58,6 +64,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -69,6 +76,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -79,6 +87,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 14, "metadata": {}, "outputs": [], "source": [ @@ -89,6 +98,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 16, "metadata": {}, "outputs": [], "source": [ @@ -98,6 +108,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -106,6 +117,7 @@ }, { "cell_type": "markdown", + "idx_": 20, "metadata": {}, "source": [ "### Dataset" @@ -114,6 +126,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 22, "metadata": {}, "outputs": [], "source": [ @@ -129,6 +142,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 24, "metadata": {}, "outputs": [], "source": [ @@ -140,6 +154,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 26, "metadata": {}, "outputs": [], "source": [ @@ -151,6 +166,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -160,6 +176,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -171,6 +188,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -181,6 +199,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -201,6 +220,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 35, "metadata": {}, "outputs": [], "source": [ @@ -214,6 +234,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 37, "metadata": {}, "outputs": [], "source": [ @@ -224,6 +245,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -238,6 +260,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -248,6 +271,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -257,6 +281,7 @@ }, { "cell_type": "markdown", + "idx_": 45, "metadata": {}, "source": [ "## Module and Parameter" @@ -265,6 +290,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 47, "metadata": {}, "outputs": [], "source": [ @@ -276,6 +302,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -285,6 +312,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -322,6 +350,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 53, "metadata": {}, "outputs": [], "source": [ @@ -343,6 +372,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 55, "metadata": {}, "outputs": [], "source": [ @@ -353,6 +383,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 57, "metadata": {}, "outputs": [], "source": [ @@ -364,6 +395,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 59, "metadata": {}, "outputs": [], "source": [ @@ -380,6 +412,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 61, "metadata": {}, "outputs": [], "source": [ @@ -391,6 +424,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 63, "metadata": {}, "outputs": [], "source": [ @@ -403,6 +437,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -413,6 +448,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -422,6 +458,7 @@ }, { "cell_type": "markdown", + "idx_": 69, "metadata": {}, "source": [ "### Simple CNN" @@ -430,6 +467,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -447,6 +485,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -457,6 +496,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 77, "metadata": {}, "outputs": [], "source": [ @@ -474,6 +514,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 79, "metadata": {}, "outputs": [], "source": [ @@ -484,6 +525,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 81, "metadata": {}, "outputs": [], "source": [ @@ -496,6 +538,7 @@ }, { "cell_type": "markdown", + "idx_": 83, "metadata": {}, "source": [ "## Loss" @@ -504,6 +547,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 85, "metadata": {}, "outputs": [], "source": [ @@ -513,6 +557,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 87, "metadata": {}, "outputs": [], "source": [ @@ -524,6 +569,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 89, "metadata": {}, "outputs": [], "source": [ @@ -534,6 +580,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 91, "metadata": {}, "outputs": [], "source": [ @@ -544,6 +591,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 93, "metadata": {}, "outputs": [], "source": [ @@ -555,6 +603,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 95, "metadata": {}, "outputs": [], "source": [ @@ -568,6 +617,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 97, "metadata": {}, "outputs": [], "source": [ @@ -577,6 +627,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 99, "metadata": {}, "outputs": [], "source": [ @@ -586,6 +637,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 101, "metadata": {}, "outputs": [], "source": [ @@ -594,6 +646,7 @@ }, { "cell_type": "markdown", + "idx_": 103, "metadata": {}, "source": [ "## Learner" @@ -602,6 +655,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 105, "metadata": {}, "outputs": [], "source": [ @@ -616,6 +670,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 107, "metadata": {}, "outputs": [], "source": [ @@ -628,6 +683,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 109, "metadata": {}, "outputs": [], "source": [ @@ -671,6 +727,7 @@ }, { "cell_type": "markdown", + "idx_": 111, "metadata": {}, "source": [ "### Callbacks" @@ -679,6 +736,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 113, "metadata": {}, "outputs": [], "source": [ @@ -688,6 +746,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 116, "metadata": {}, "outputs": [], "source": [ @@ -702,6 +761,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 118, "metadata": {}, "outputs": [], "source": [ @@ -725,6 +785,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 120, "metadata": {}, "outputs": [], "source": [ @@ -735,6 +796,7 @@ }, { "cell_type": "markdown", + "idx_": 122, "metadata": {}, "source": [ "### Scheduling the Learning Rate" @@ -743,6 +805,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 124, "metadata": {}, "outputs": [], "source": [ @@ -765,6 +828,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 126, "metadata": {}, "outputs": [], "source": [ @@ -776,6 +840,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 128, "metadata": {}, "outputs": [], "source": [ @@ -786,6 +851,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 130, "metadata": {}, "outputs": [], "source": [ @@ -813,6 +879,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 132, "metadata": {}, "outputs": [], "source": [ @@ -823,6 +890,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 134, "metadata": {}, "outputs": [], "source": [ @@ -832,6 +900,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 136, "metadata": {}, "outputs": [], "source": [ @@ -840,6 +909,7 @@ }, { "cell_type": "markdown", + "idx_": 137, "metadata": {}, "source": [ "## Conclusion" @@ -847,6 +917,7 @@ }, { "cell_type": "markdown", + "idx_": 139, "metadata": {}, "source": [ "## Questionnaire" @@ -854,6 +925,7 @@ }, { "cell_type": "markdown", + "idx_": 140, "metadata": {}, "source": [ "> tip: Experiments: For the questions here that ask you to explain what some function or class is, you should also complete your own code experiments." @@ -861,6 +933,7 @@ }, { "cell_type": "markdown", + "idx_": 141, "metadata": {}, "source": [ "1. What is `glob`?\n", @@ -901,6 +974,7 @@ }, { "cell_type": "markdown", + "idx_": 142, "metadata": {}, "source": [ "### Further Research" @@ -908,6 +982,7 @@ }, { "cell_type": "markdown", + "idx_": 143, "metadata": {}, "source": [ "1. Write `resnet18` from scratch (refer to <> as needed), and train it with the `Learner` in this chapter.\n", @@ -924,6 +999,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 144, "metadata": {}, "outputs": [], "source": [] @@ -934,11 +1010,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 2, + "path_": "19_learner.ipynb" } diff --git a/clean/20_conclusion.ipynb b/clean/20_conclusion.ipynb index d743a03..a8e7de6 100644 --- a/clean/20_conclusion.ipynb +++ b/clean/20_conclusion.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -14,6 +15,7 @@ }, { "cell_type": "markdown", + "idx_": 2, "metadata": {}, "source": [ "# Concluding Thoughts" @@ -22,6 +24,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 6, "metadata": {}, "outputs": [], "source": [] @@ -32,11 +35,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 4, + "path_": "20_conclusion.ipynb" } diff --git a/clean/app_blog.ipynb b/clean/app_blog.ipynb index b7341e8..9c97f94 100644 --- a/clean/app_blog.ipynb +++ b/clean/app_blog.ipynb @@ -2,6 +2,7 @@ "cells": [ { "cell_type": "markdown", + "idx_": 1, "metadata": {}, "source": [ "# Creating a Blog" @@ -9,6 +10,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "## Blogging with GitHub Pages" @@ -16,6 +18,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "### Creating the Repository" @@ -23,6 +26,7 @@ }, { "cell_type": "markdown", + "idx_": 7, "metadata": {}, "source": [ "### Setting Up Your Home Page" @@ -30,6 +34,7 @@ }, { "cell_type": "markdown", + "idx_": 11, "metadata": {}, "source": [ "### Creating Posts" @@ -37,6 +42,7 @@ }, { "cell_type": "markdown", + "idx_": 17, "metadata": {}, "source": [ "### Synchronizing GitHub and Your Computer" @@ -44,6 +50,7 @@ }, { "cell_type": "markdown", + "idx_": 21, "metadata": {}, "source": [ "## Jupyter for Blogging" @@ -52,6 +59,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 23, "metadata": {}, "outputs": [], "source": [] @@ -62,11 +70,12 @@ "split_at_heading": true }, "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 2, + "path_": "app_blog.ipynb" } diff --git a/clean/app_jupyter.ipynb b/clean/app_jupyter.ipynb index e4dbc8a..cb3208e 100644 --- a/clean/app_jupyter.ipynb +++ b/clean/app_jupyter.ipynb @@ -3,6 +3,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,6 +16,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -23,6 +25,7 @@ }, { "cell_type": "markdown", + "idx_": 3, "metadata": {}, "source": [ "# Appendix: Jupyter Notebook 101" @@ -30,6 +33,7 @@ }, { "cell_type": "markdown", + "idx_": 5, "metadata": {}, "source": [ "## Introduction" @@ -38,6 +42,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -46,6 +51,7 @@ }, { "cell_type": "markdown", + "idx_": 9, "metadata": {}, "source": [ "## Writing" @@ -54,6 +60,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -62,6 +69,7 @@ }, { "cell_type": "markdown", + "idx_": 14, "metadata": {}, "source": [ "## Modes" @@ -69,6 +77,7 @@ }, { "cell_type": "markdown", + "idx_": 16, "metadata": {}, "source": [ "## Other Important Considerations" @@ -76,6 +85,7 @@ }, { "cell_type": "markdown", + "idx_": 19, "metadata": {}, "source": [ "## Markdown Formatting\n" @@ -83,6 +93,7 @@ }, { "cell_type": "markdown", + "idx_": 20, "metadata": {}, "source": [ "### Italics, Bold, Strikethrough, Inline, Blockquotes and Links" @@ -90,6 +101,7 @@ }, { "cell_type": "markdown", + "idx_": 22, "metadata": {}, "source": [ "### Headings" @@ -97,6 +109,7 @@ }, { "cell_type": "markdown", + "idx_": 24, "metadata": {}, "source": [ "### Lists" @@ -104,6 +117,7 @@ }, { "cell_type": "markdown", + "idx_": 26, "metadata": {}, "source": [ "## Code Capabilities" @@ -112,6 +126,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 28, "metadata": {}, "outputs": [], "source": [ @@ -123,6 +138,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -132,6 +148,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 30, "metadata": {}, "outputs": [], "source": [ @@ -145,6 +162,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -155,6 +173,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -163,6 +182,7 @@ }, { "cell_type": "markdown", + "idx_": 34, "metadata": {}, "source": [ "## Running the App Locally" @@ -170,6 +190,7 @@ }, { "cell_type": "markdown", + "idx_": 36, "metadata": {}, "source": [ "## Creating a Notebook" @@ -177,6 +198,7 @@ }, { "cell_type": "markdown", + "idx_": 38, "metadata": {}, "source": [ "## Shortcuts and Tricks" @@ -184,6 +206,7 @@ }, { "cell_type": "markdown", + "idx_": 40, "metadata": {}, "source": [ "### Command Mode Shortcuts" @@ -191,6 +214,7 @@ }, { "cell_type": "markdown", + "idx_": 42, "metadata": {}, "source": [ "### Cell Tricks" @@ -198,6 +222,7 @@ }, { "cell_type": "markdown", + "idx_": 44, "metadata": {}, "source": [ "### Line Magics" @@ -206,6 +231,7 @@ { "cell_type": "code", "execution_count": null, + "idx_": 46, "metadata": {}, "outputs": [], "source": [ @@ -215,11 +241,12 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "python3", "language": "python", "name": "python3" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 2, + "path_": "app_jupyter.ipynb" } From e17eb8e4c8210fc4a505be62bfe304382f1eeeb9 Mon Sep 17 00:00:00 2001 From: gunchu Date: Wed, 29 Mar 2023 21:01:35 -0700 Subject: [PATCH 3/4] remove idx_ and path_ extraneous keys in the JSON --- .vscode/settings.json | 3 + clean/01_intro.ipynb | 60 +----------- clean/02_production.ipynb | 76 +-------------- clean/03_ethics.ipynb | 41 +------- clean/04_mnist_basics.ipynb | 171 +--------------------------------- clean/05_pet_breeds.ipynb | 76 +-------------- clean/06_multicat.ipynb | 75 +-------------- clean/07_sizing_and_tta.ipynb | 33 +------ clean/08_collab.ipynb | 72 +------------- clean/09_tabular.ipynb | 149 +---------------------------- clean/10_nlp.ipynb | 73 +-------------- clean/11_midlevel_data.ipynb | 61 +----------- clean/12_nlp_dive.ipynb | 68 +------------- clean/13_convolutions.ipynb | 90 +----------------- clean/14_resnet.ipynb | 41 +------- clean/15_arch_details.ipynb | 30 +----- clean/16_accel_sgd.ipynb | 46 +-------- clean/17_foundations.ipynb | 105 +-------------------- clean/18_CAM.ipynb | 35 +------ clean/19_learner.ipynb | 79 +--------------- clean/20_conclusion.ipynb | 6 +- clean/app_blog.ipynb | 11 +-- clean/app_jupyter.ipynb | 29 +----- tools/clean.py | 5 + 24 files changed, 30 insertions(+), 1405 deletions(-) create mode 100644 .vscode/settings.json diff --git a/.vscode/settings.json b/.vscode/settings.json new file mode 100644 index 0000000..de288e1 --- /dev/null +++ b/.vscode/settings.json @@ -0,0 +1,3 @@ +{ + "python.formatting.provider": "black" +} \ No newline at end of file diff --git a/clean/01_intro.ipynb b/clean/01_intro.ipynb index 89a6de4..819391d 100644 --- a/clean/01_intro.ipynb +++ b/clean/01_intro.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -26,7 +24,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# Your Deep Learning Journey" @@ -34,7 +31,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## Deep Learning Is for Everyone" @@ -42,7 +38,6 @@ }, { "cell_type": "markdown", - "idx_": 9, "metadata": {}, "source": [ "## Neural Networks: A Brief History" @@ -50,7 +45,6 @@ }, { "cell_type": "markdown", - "idx_": 15, "metadata": {}, "source": [ "## Who We Are" @@ -58,7 +52,6 @@ }, { "cell_type": "markdown", - "idx_": 22, "metadata": {}, "source": [ "## How to Learn Deep Learning" @@ -66,7 +59,6 @@ }, { "cell_type": "markdown", - "idx_": 26, "metadata": {}, "source": [ "### Your Projects and Your Mindset" @@ -74,7 +66,6 @@ }, { "cell_type": "markdown", - "idx_": 31, "metadata": {}, "source": [ "## The Software: PyTorch, fastai, and Jupyter" @@ -82,7 +73,6 @@ }, { "cell_type": "markdown", - "idx_": 37, "metadata": {}, "source": [ "## Your First Model" @@ -90,7 +80,6 @@ }, { "cell_type": "markdown", - "idx_": 40, "metadata": {}, "source": [ "### Getting a GPU Deep Learning Server" @@ -98,7 +87,6 @@ }, { "cell_type": "markdown", - "idx_": 47, "metadata": {}, "source": [ "### Running Your First Notebook" @@ -107,7 +95,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 54, "metadata": {}, "outputs": [], "source": [ @@ -126,7 +113,6 @@ }, { "cell_type": "markdown", - "idx_": 57, "metadata": {}, "source": [ "### Sidebar: This Book Was Written in Jupyter Notebooks" @@ -135,7 +121,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 60, "metadata": {}, "outputs": [], "source": [ @@ -145,7 +130,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 62, "metadata": {}, "outputs": [], "source": [ @@ -155,7 +139,6 @@ }, { "cell_type": "markdown", - "idx_": 63, "metadata": {}, "source": [ "### End sidebar" @@ -164,7 +147,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -175,7 +157,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 68, "metadata": {}, "outputs": [], "source": [ @@ -187,7 +168,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -199,7 +179,6 @@ }, { "cell_type": "markdown", - "idx_": 71, "metadata": {}, "source": [ "### What Is Machine Learning?" @@ -208,7 +187,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -219,7 +197,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 79, "metadata": {}, "outputs": [], "source": [ @@ -230,7 +207,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 81, "metadata": {}, "outputs": [], "source": [ @@ -243,7 +219,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -253,7 +228,6 @@ }, { "cell_type": "markdown", - "idx_": 86, "metadata": {}, "source": [ "### What Is a Neural Network?" @@ -261,7 +235,6 @@ }, { "cell_type": "markdown", - "idx_": 90, "metadata": {}, "source": [ "### A Bit of Deep Learning Jargon" @@ -270,7 +243,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 92, "metadata": {}, "outputs": [], "source": [ @@ -282,7 +254,6 @@ }, { "cell_type": "markdown", - "idx_": 93, "metadata": {}, "source": [ "### Limitations Inherent To Machine Learning\n", @@ -301,7 +272,6 @@ }, { "cell_type": "markdown", - "idx_": 96, "metadata": {}, "source": [ "### How Our Image Recognizer Works" @@ -309,7 +279,6 @@ }, { "cell_type": "markdown", - "idx_": 115, "metadata": {}, "source": [ "### What Our Image Recognizer Learned" @@ -317,7 +286,6 @@ }, { "cell_type": "markdown", - "idx_": 125, "metadata": {}, "source": [ "### Image Recognizers Can Tackle Non-Image Tasks" @@ -325,7 +293,6 @@ }, { "cell_type": "markdown", - "idx_": 137, "metadata": {}, "source": [ "### Jargon Recap" @@ -333,7 +300,6 @@ }, { "cell_type": "markdown", - "idx_": 140, "metadata": {}, "source": [ "## Deep Learning Is Not Just for Image Classification" @@ -342,7 +308,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 142, "metadata": {}, "outputs": [], "source": [ @@ -360,7 +325,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 144, "metadata": {}, "outputs": [], "source": [ @@ -370,7 +334,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 146, "metadata": {}, "outputs": [], "source": [ @@ -383,7 +346,6 @@ }, { "cell_type": "markdown", - "idx_": 147, "metadata": {}, "source": [ "If you hit a \"CUDA out of memory error\" after running this cell, click on the menu Kernel, then restart. Instead of executing the cell above, copy and paste the following code in it:\n", @@ -402,7 +364,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 149, "metadata": {}, "outputs": [], "source": [ @@ -411,7 +372,6 @@ }, { "cell_type": "markdown", - "idx_": 151, "metadata": {}, "source": [ "### Sidebar: The Order Matters" @@ -419,7 +379,6 @@ }, { "cell_type": "markdown", - "idx_": 153, "metadata": {}, "source": [ "### End sidebar" @@ -428,7 +387,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 158, "metadata": {}, "outputs": [], "source": [ @@ -447,7 +405,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 160, "metadata": {}, "outputs": [], "source": [ @@ -457,7 +414,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 163, "metadata": {}, "outputs": [], "source": [ @@ -471,7 +427,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 165, "metadata": {}, "outputs": [], "source": [ @@ -480,7 +435,6 @@ }, { "cell_type": "markdown", - "idx_": 166, "metadata": {}, "source": [ "### Sidebar: Datasets: Food for Models" @@ -488,7 +442,6 @@ }, { "cell_type": "markdown", - "idx_": 168, "metadata": {}, "source": [ "### End sidebar" @@ -496,7 +449,6 @@ }, { "cell_type": "markdown", - "idx_": 170, "metadata": {}, "source": [ "## Validation Sets and Test Sets" @@ -504,7 +456,6 @@ }, { "cell_type": "markdown", - "idx_": 173, "metadata": {}, "source": [ "### Use Judgment in Defining Test Sets" @@ -512,7 +463,6 @@ }, { "cell_type": "markdown", - "idx_": 185, "metadata": {}, "source": [ "## A _Choose Your Own Adventure_ moment" @@ -520,7 +470,6 @@ }, { "cell_type": "markdown", - "idx_": 187, "metadata": {}, "source": [ "## Questionnaire" @@ -528,7 +477,6 @@ }, { "cell_type": "markdown", - "idx_": 188, "metadata": {}, "source": [ "It can be hard to know in pages and pages of prose what the key things are that you really need to focus on and remember. So, we've prepared a list of questions and suggested steps to complete at the end of each chapter. All the answers are in the text of the chapter, so if you're not sure about anything here, reread that part of the text and make sure you understand it. Answers to all these questions are also available on the [book's website](https://book.fast.ai). You can also visit [the forums](https://forums.fast.ai) if you get stuck to get help from other folks studying this material.\n", @@ -538,7 +486,6 @@ }, { "cell_type": "markdown", - "idx_": 189, "metadata": {}, "source": [ "1. Do you need these for deep learning?\n", @@ -584,7 +531,6 @@ }, { "cell_type": "markdown", - "idx_": 190, "metadata": {}, "source": [ "### Further Research" @@ -592,7 +538,6 @@ }, { "cell_type": "markdown", - "idx_": 191, "metadata": {}, "source": [ "Each chapter also has a \"Further Research\" section that poses questions that aren't fully answered in the text, or gives more advanced assignments. Answers to these questions aren't on the book's website; you'll need to do your own research!" @@ -600,7 +545,6 @@ }, { "cell_type": "markdown", - "idx_": 192, "metadata": {}, "source": [ "1. Why is a GPU useful for deep learning? How is a CPU different, and why is it less effective for deep learning?\n", @@ -610,7 +554,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 193, "metadata": {}, "outputs": [], "source": [] @@ -627,6 +570,5 @@ } }, "nbformat": 4, - "nbformat_minor": 4, - "path_": "01_intro.ipynb" + "nbformat_minor": 4 } diff --git a/clean/02_production.ipynb b/clean/02_production.ipynb index 0aeaf4b..d063d9e 100644 --- a/clean/02_production.ipynb +++ b/clean/02_production.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -27,7 +25,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# From Model to Production" @@ -35,7 +32,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## The Practice of Deep Learning" @@ -43,7 +39,6 @@ }, { "cell_type": "markdown", - "idx_": 7, "metadata": {}, "source": [ "### Starting Your Project" @@ -51,7 +46,6 @@ }, { "cell_type": "markdown", - "idx_": 11, "metadata": {}, "source": [ "### The State of Deep Learning" @@ -59,7 +53,6 @@ }, { "cell_type": "markdown", - "idx_": 13, "metadata": {}, "source": [ "#### Computer vision" @@ -67,7 +60,6 @@ }, { "cell_type": "markdown", - "idx_": 15, "metadata": {}, "source": [ "#### Text (natural language processing)" @@ -75,7 +67,6 @@ }, { "cell_type": "markdown", - "idx_": 17, "metadata": {}, "source": [ "#### Combining text and images" @@ -83,7 +74,6 @@ }, { "cell_type": "markdown", - "idx_": 19, "metadata": {}, "source": [ "#### Tabular data" @@ -91,7 +81,6 @@ }, { "cell_type": "markdown", - "idx_": 21, "metadata": {}, "source": [ "#### Recommendation systems" @@ -99,7 +88,6 @@ }, { "cell_type": "markdown", - "idx_": 24, "metadata": {}, "source": [ "#### Other data types" @@ -107,7 +95,6 @@ }, { "cell_type": "markdown", - "idx_": 26, "metadata": {}, "source": [ "### The Drivetrain Approach" @@ -115,7 +102,6 @@ }, { "cell_type": "markdown", - "idx_": 32, "metadata": {}, "source": [ "## Gathering Data" @@ -123,7 +109,6 @@ }, { "cell_type": "markdown", - "idx_": 36, "metadata": {}, "source": [ "# clean\n", @@ -133,7 +118,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 37, "metadata": {}, "outputs": [], "source": [ @@ -143,7 +127,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -153,7 +136,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -165,7 +147,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -176,7 +157,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -187,7 +167,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 44, "metadata": {}, "outputs": [], "source": [ @@ -198,7 +177,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 46, "metadata": {}, "outputs": [], "source": [ @@ -209,7 +187,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 47, "metadata": {}, "outputs": [], "source": [ @@ -225,7 +202,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -236,7 +212,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 52, "metadata": {}, "outputs": [], "source": [ @@ -247,7 +222,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 54, "metadata": {}, "outputs": [], "source": [ @@ -256,7 +230,6 @@ }, { "cell_type": "markdown", - "idx_": 55, "metadata": {}, "source": [ "### Sidebar: Getting Help in Jupyter Notebooks" @@ -264,7 +237,6 @@ }, { "cell_type": "markdown", - "idx_": 57, "metadata": {}, "source": [ "### End sidebar" @@ -272,7 +244,6 @@ }, { "cell_type": "markdown", - "idx_": 62, "metadata": {}, "source": [ "## From Data to DataLoaders" @@ -281,7 +252,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 66, "metadata": {}, "outputs": [], "source": [ @@ -296,7 +266,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -306,7 +275,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -316,7 +284,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -328,7 +295,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 74, "metadata": {}, "outputs": [], "source": [ @@ -340,7 +306,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 76, "metadata": {}, "outputs": [], "source": [ @@ -351,7 +316,6 @@ }, { "cell_type": "markdown", - "idx_": 78, "metadata": {}, "source": [ "### Data Augmentation" @@ -360,7 +324,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 80, "metadata": {}, "outputs": [], "source": [ @@ -371,7 +334,6 @@ }, { "cell_type": "markdown", - "idx_": 82, "metadata": {}, "source": [ "## Training Your Model, and Using It to Clean Your Data" @@ -380,7 +342,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 84, "metadata": {}, "outputs": [], "source": [ @@ -393,7 +354,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 86, "metadata": {}, "outputs": [], "source": [ @@ -404,7 +364,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 88, "metadata": {}, "outputs": [], "source": [ @@ -415,7 +374,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 90, "metadata": {}, "outputs": [], "source": [ @@ -425,7 +383,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 92, "metadata": {}, "outputs": [], "source": [ @@ -436,7 +393,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -447,7 +403,6 @@ }, { "cell_type": "markdown", - "idx_": 98, "metadata": {}, "source": [ "## Turning Your Model into an Online Application" @@ -455,7 +410,6 @@ }, { "cell_type": "markdown", - "idx_": 100, "metadata": {}, "source": [ "### Using the Model for Inference" @@ -464,7 +418,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 102, "metadata": {}, "outputs": [], "source": [ @@ -474,7 +427,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 104, "metadata": {}, "outputs": [], "source": [ @@ -485,7 +437,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 106, "metadata": {}, "outputs": [], "source": [ @@ -495,7 +446,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 108, "metadata": {}, "outputs": [], "source": [ @@ -505,7 +455,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 110, "metadata": {}, "outputs": [], "source": [ @@ -514,7 +463,6 @@ }, { "cell_type": "markdown", - "idx_": 113, "metadata": {}, "source": [ "### Creating a Notebook App from the Model" @@ -523,7 +471,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 115, "metadata": {}, "outputs": [], "source": [ @@ -534,7 +481,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 117, "metadata": {}, "outputs": [], "source": [ @@ -546,7 +492,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 118, "metadata": {}, "outputs": [], "source": [ @@ -556,7 +501,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 121, "metadata": {}, "outputs": [], "source": [ @@ -569,7 +513,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 123, "metadata": {}, "outputs": [], "source": [ @@ -579,7 +522,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 125, "metadata": {}, "outputs": [], "source": [ @@ -591,7 +533,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 127, "metadata": {}, "outputs": [], "source": [ @@ -602,7 +543,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 129, "metadata": {}, "outputs": [], "source": [ @@ -619,7 +559,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 131, "metadata": {}, "outputs": [], "source": [ @@ -631,7 +570,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 132, "metadata": {}, "outputs": [], "source": [ @@ -641,7 +579,6 @@ }, { "cell_type": "markdown", - "idx_": 135, "metadata": {}, "source": [ "### Turning Your Notebook into a Real App" @@ -650,7 +587,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 136, "metadata": {}, "outputs": [], "source": [ @@ -661,7 +597,6 @@ }, { "cell_type": "markdown", - "idx_": 138, "metadata": {}, "source": [ "### Deploying your app" @@ -669,7 +604,6 @@ }, { "cell_type": "markdown", - "idx_": 145, "metadata": {}, "source": [ "## How to Avoid Disaster" @@ -677,7 +611,6 @@ }, { "cell_type": "markdown", - "idx_": 151, "metadata": {}, "source": [ "### Unforeseen Consequences and Feedback Loops" @@ -685,7 +618,6 @@ }, { "cell_type": "markdown", - "idx_": 153, "metadata": {}, "source": [ "## Get Writing!" @@ -693,7 +625,6 @@ }, { "cell_type": "markdown", - "idx_": 155, "metadata": {}, "source": [ "## Questionnaire" @@ -701,7 +632,6 @@ }, { "cell_type": "markdown", - "idx_": 156, "metadata": {}, "source": [ "1. Provide an example of where the bear classification model might work poorly in production, due to structural or style differences in the training data.\n", @@ -735,7 +665,6 @@ }, { "cell_type": "markdown", - "idx_": 157, "metadata": {}, "source": [ "### Further Research" @@ -743,7 +672,6 @@ }, { "cell_type": "markdown", - "idx_": 158, "metadata": {}, "source": [ "1. Consider how the Drivetrain Approach maps to a project or problem you're interested in.\n", @@ -755,7 +683,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 159, "metadata": {}, "outputs": [], "source": [] @@ -772,6 +699,5 @@ } }, "nbformat": 4, - "nbformat_minor": 4, - "path_": "02_production.ipynb" + "nbformat_minor": 4 } diff --git a/clean/03_ethics.ipynb b/clean/03_ethics.ipynb index b0d0c2d..231e497 100644 --- a/clean/03_ethics.ipynb +++ b/clean/03_ethics.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,7 +14,6 @@ }, { "cell_type": "markdown", - "idx_": 2, "metadata": {}, "source": [ "# Data Ethics" @@ -23,7 +21,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "### Sidebar: Acknowledgement: Dr. Rachel Thomas" @@ -31,7 +28,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "### End sidebar" @@ -39,7 +35,6 @@ }, { "cell_type": "markdown", - "idx_": 9, "metadata": {}, "source": [ "## Key Examples for Data Ethics" @@ -47,7 +42,6 @@ }, { "cell_type": "markdown", - "idx_": 11, "metadata": {}, "source": [ "### Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits" @@ -55,7 +49,6 @@ }, { "cell_type": "markdown", - "idx_": 13, "metadata": {}, "source": [ "### Feedback Loops: YouTube's Recommendation System" @@ -63,7 +56,6 @@ }, { "cell_type": "markdown", - "idx_": 15, "metadata": {}, "source": [ "### Bias: Professor Latanya Sweeney \"Arrested\"" @@ -71,7 +63,6 @@ }, { "cell_type": "markdown", - "idx_": 19, "metadata": {}, "source": [ "### Why Does This Matter?" @@ -79,7 +70,6 @@ }, { "cell_type": "markdown", - "idx_": 25, "metadata": {}, "source": [ "## Integrating Machine Learning with Product Design" @@ -87,7 +77,6 @@ }, { "cell_type": "markdown", - "idx_": 29, "metadata": {}, "source": [ "## Topics in Data Ethics" @@ -95,7 +84,6 @@ }, { "cell_type": "markdown", - "idx_": 32, "metadata": {}, "source": [ "### Recourse and Accountability" @@ -103,7 +91,6 @@ }, { "cell_type": "markdown", - "idx_": 34, "metadata": {}, "source": [ "### Feedback Loops" @@ -111,7 +98,6 @@ }, { "cell_type": "markdown", - "idx_": 42, "metadata": {}, "source": [ "### Bias" @@ -119,7 +105,6 @@ }, { "cell_type": "markdown", - "idx_": 46, "metadata": {}, "source": [ "#### Historical bias" @@ -127,7 +112,6 @@ }, { "cell_type": "markdown", - "idx_": 62, "metadata": {}, "source": [ "#### Measurement bias" @@ -135,7 +119,6 @@ }, { "cell_type": "markdown", - "idx_": 64, "metadata": {}, "source": [ "#### Aggregation bias" @@ -143,7 +126,6 @@ }, { "cell_type": "markdown", - "idx_": 66, "metadata": {}, "source": [ "#### Representation bias" @@ -151,7 +133,6 @@ }, { "cell_type": "markdown", - "idx_": 70, "metadata": {}, "source": [ "### Addressing different types of bias" @@ -159,7 +140,6 @@ }, { "cell_type": "markdown", - "idx_": 73, "metadata": {}, "source": [ "### Disinformation" @@ -167,7 +147,6 @@ }, { "cell_type": "markdown", - "idx_": 77, "metadata": {}, "source": [ "## Identifying and Addressing Ethical Issues" @@ -175,7 +154,6 @@ }, { "cell_type": "markdown", - "idx_": 79, "metadata": {}, "source": [ "### Analyze a Project You Are Working On" @@ -183,7 +161,6 @@ }, { "cell_type": "markdown", - "idx_": 81, "metadata": {}, "source": [ "### Processes to Implement" @@ -191,7 +168,6 @@ }, { "cell_type": "markdown", - "idx_": 83, "metadata": {}, "source": [ "#### Ethical lenses" @@ -199,7 +175,6 @@ }, { "cell_type": "markdown", - "idx_": 85, "metadata": {}, "source": [ "### The Power of Diversity" @@ -207,7 +182,6 @@ }, { "cell_type": "markdown", - "idx_": 88, "metadata": {}, "source": [ "### Fairness, Accountability, and Transparency" @@ -215,7 +189,6 @@ }, { "cell_type": "markdown", - "idx_": 92, "metadata": {}, "source": [ "## Role of Policy" @@ -223,7 +196,6 @@ }, { "cell_type": "markdown", - "idx_": 94, "metadata": {}, "source": [ "### The Effectiveness of Regulation" @@ -231,7 +203,6 @@ }, { "cell_type": "markdown", - "idx_": 96, "metadata": {}, "source": [ "### Rights and Policy" @@ -239,7 +210,6 @@ }, { "cell_type": "markdown", - "idx_": 98, "metadata": {}, "source": [ "### Cars: A Historical Precedent" @@ -247,7 +217,6 @@ }, { "cell_type": "markdown", - "idx_": 100, "metadata": {}, "source": [ "## Conclusion" @@ -255,7 +224,6 @@ }, { "cell_type": "markdown", - "idx_": 102, "metadata": {}, "source": [ "## Questionnaire" @@ -263,7 +231,6 @@ }, { "cell_type": "markdown", - "idx_": 103, "metadata": {}, "source": [ "1. Does ethics provide a list of \"right answers\"?\n", @@ -288,7 +255,6 @@ }, { "cell_type": "markdown", - "idx_": 104, "metadata": {}, "source": [ "### Further Research:" @@ -296,7 +262,6 @@ }, { "cell_type": "markdown", - "idx_": 105, "metadata": {}, "source": [ "1. Read the article \"What Happens When an Algorithm Cuts Your Healthcare\". How could problems like this be avoided in the future?\n", @@ -311,7 +276,6 @@ }, { "cell_type": "markdown", - "idx_": 106, "metadata": {}, "source": [ "## Deep Learning in Practice: That's a Wrap!" @@ -319,7 +283,6 @@ }, { "cell_type": "markdown", - "idx_": 107, "metadata": {}, "source": [ "Congratulations! You've made it to the end of the first section of the book. In this section we've tried to show you what deep learning can do, and how you can use it to create real applications and products. At this point, you will get a lot more out of the book if you spend some time trying out what you've learned. Perhaps you have already been doing this as you go along—in which case, great! If not, that's no problem either... Now is a great time to start experimenting yourself.\n", @@ -340,7 +303,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 108, "metadata": {}, "outputs": [], "source": [] @@ -357,6 +319,5 @@ } }, "nbformat": 4, - "nbformat_minor": 4, - "path_": "03_ethics.ipynb" + "nbformat_minor": 4 } diff --git a/clean/04_mnist_basics.ipynb b/clean/04_mnist_basics.ipynb index 48e4405..51acec0 100644 --- a/clean/04_mnist_basics.ipynb +++ b/clean/04_mnist_basics.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -29,7 +27,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# Under the Hood: Training a Digit Classifier" @@ -37,7 +34,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## Pixels: The Foundations of Computer Vision" @@ -45,7 +41,6 @@ }, { "cell_type": "markdown", - "idx_": 7, "metadata": {}, "source": [ "## Sidebar: Tenacity and Deep Learning" @@ -53,7 +48,6 @@ }, { "cell_type": "markdown", - "idx_": 9, "metadata": {}, "source": [ "## End sidebar" @@ -62,7 +56,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -72,7 +65,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 12, "metadata": {}, "outputs": [], "source": [ @@ -83,7 +75,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 14, "metadata": {}, "outputs": [], "source": [ @@ -93,7 +84,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 16, "metadata": {}, "outputs": [], "source": [ @@ -103,7 +93,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -115,7 +104,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 20, "metadata": {}, "outputs": [], "source": [ @@ -127,7 +115,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 22, "metadata": {}, "outputs": [], "source": [ @@ -137,7 +124,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 24, "metadata": {}, "outputs": [], "source": [ @@ -147,7 +133,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 26, "metadata": {}, "outputs": [], "source": [ @@ -158,7 +143,6 @@ }, { "cell_type": "markdown", - "idx_": 29, "metadata": {}, "source": [ "## First Try: Pixel Similarity" @@ -167,7 +151,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -179,7 +162,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -189,7 +171,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -201,7 +182,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -211,7 +191,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -221,7 +200,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 45, "metadata": {}, "outputs": [], "source": [ @@ -232,7 +210,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 47, "metadata": {}, "outputs": [], "source": [ @@ -243,7 +220,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -254,7 +230,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 52, "metadata": {}, "outputs": [], "source": [ @@ -266,7 +241,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 53, "metadata": {}, "outputs": [], "source": [ @@ -278,7 +252,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 56, "metadata": {}, "outputs": [], "source": [ @@ -287,7 +260,6 @@ }, { "cell_type": "markdown", - "idx_": 61, "metadata": {}, "source": [ "### NumPy Arrays and PyTorch Tensors" @@ -296,7 +268,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -308,7 +279,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 66, "metadata": {}, "outputs": [], "source": [ @@ -318,7 +288,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -328,7 +297,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -338,7 +306,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -348,7 +315,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -358,7 +324,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -368,7 +333,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 77, "metadata": {}, "outputs": [], "source": [ @@ -378,7 +342,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 79, "metadata": {}, "outputs": [], "source": [ @@ -387,7 +350,6 @@ }, { "cell_type": "markdown", - "idx_": 81, "metadata": {}, "source": [ "## Computing Metrics Using Broadcasting" @@ -396,7 +358,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -412,7 +373,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 85, "metadata": {}, "outputs": [], "source": [ @@ -423,7 +383,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 87, "metadata": {}, "outputs": [], "source": [ @@ -434,7 +393,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 89, "metadata": {}, "outputs": [], "source": [ @@ -444,7 +402,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 91, "metadata": {}, "outputs": [], "source": [ @@ -454,7 +411,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 93, "metadata": {}, "outputs": [], "source": [ @@ -464,7 +420,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 95, "metadata": {}, "outputs": [], "source": [ @@ -474,7 +429,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 97, "metadata": {}, "outputs": [], "source": [ @@ -484,7 +438,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 99, "metadata": {}, "outputs": [], "source": [ @@ -496,7 +449,6 @@ }, { "cell_type": "markdown", - "idx_": 101, "metadata": {}, "source": [ "## Stochastic Gradient Descent (SGD)" @@ -505,7 +457,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 105, "metadata": {}, "outputs": [], "source": [ @@ -518,7 +469,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 108, "metadata": {}, "outputs": [], "source": [ @@ -528,7 +478,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 110, "metadata": {}, "outputs": [], "source": [ @@ -538,7 +487,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 112, "metadata": {}, "outputs": [], "source": [ @@ -548,7 +496,6 @@ }, { "cell_type": "markdown", - "idx_": 118, "metadata": {}, "source": [ "### Calculating Gradients" @@ -557,7 +504,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 121, "metadata": {}, "outputs": [], "source": [ @@ -567,7 +513,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 123, "metadata": {}, "outputs": [], "source": [ @@ -578,7 +523,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 125, "metadata": {}, "outputs": [], "source": [ @@ -588,7 +532,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 128, "metadata": {}, "outputs": [], "source": [ @@ -598,7 +541,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 130, "metadata": {}, "outputs": [], "source": [ @@ -609,7 +551,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 132, "metadata": {}, "outputs": [], "source": [ @@ -622,7 +563,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 134, "metadata": {}, "outputs": [], "source": [ @@ -632,7 +572,6 @@ }, { "cell_type": "markdown", - "idx_": 136, "metadata": {}, "source": [ "### Stepping With a Learning Rate" @@ -640,7 +579,6 @@ }, { "cell_type": "markdown", - "idx_": 144, "metadata": {}, "source": [ "### An End-to-End SGD Example" @@ -649,7 +587,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 146, "metadata": {}, "outputs": [], "source": [ @@ -659,7 +596,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 147, "metadata": {}, "outputs": [], "source": [ @@ -670,7 +606,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 149, "metadata": {}, "outputs": [], "source": [ @@ -682,7 +617,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 151, "metadata": {}, "outputs": [], "source": [ @@ -691,7 +625,6 @@ }, { "cell_type": "markdown", - "idx_": 153, "metadata": {}, "source": [ "#### Step 1: Initialize the parameters" @@ -700,7 +633,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 155, "metadata": {}, "outputs": [], "source": [ @@ -710,7 +642,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 156, "metadata": {}, "outputs": [], "source": [ @@ -720,7 +651,6 @@ }, { "cell_type": "markdown", - "idx_": 157, "metadata": {}, "source": [ "#### Step 2: Calculate the predictions" @@ -729,7 +659,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 159, "metadata": {}, "outputs": [], "source": [ @@ -739,7 +668,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 161, "metadata": {}, "outputs": [], "source": [ @@ -753,7 +681,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 162, "metadata": {}, "outputs": [], "source": [ @@ -762,7 +689,6 @@ }, { "cell_type": "markdown", - "idx_": 164, "metadata": {}, "source": [ "#### Step 3: Calculate the loss" @@ -771,7 +697,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 166, "metadata": {}, "outputs": [], "source": [ @@ -781,7 +706,6 @@ }, { "cell_type": "markdown", - "idx_": 168, "metadata": {}, "source": [ "#### Step 4: Calculate the gradients" @@ -790,7 +714,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 170, "metadata": {}, "outputs": [], "source": [ @@ -801,7 +724,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 171, "metadata": {}, "outputs": [], "source": [ @@ -811,7 +733,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 173, "metadata": {}, "outputs": [], "source": [ @@ -820,7 +741,6 @@ }, { "cell_type": "markdown", - "idx_": 174, "metadata": {}, "source": [ "#### Step 5: Step the weights. " @@ -829,7 +749,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 176, "metadata": {}, "outputs": [], "source": [ @@ -841,7 +760,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 179, "metadata": {}, "outputs": [], "source": [ @@ -852,7 +770,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 181, "metadata": {}, "outputs": [], "source": [ @@ -862,7 +779,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 183, "metadata": {}, "outputs": [], "source": [ @@ -878,7 +794,6 @@ }, { "cell_type": "markdown", - "idx_": 184, "metadata": {}, "source": [ "#### Step 6: Repeat the process " @@ -887,7 +802,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 186, "metadata": {}, "outputs": [], "source": [ @@ -897,7 +811,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 187, "metadata": {}, "outputs": [], "source": [ @@ -908,7 +821,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 189, "metadata": {}, "outputs": [], "source": [ @@ -919,7 +831,6 @@ }, { "cell_type": "markdown", - "idx_": 190, "metadata": {}, "source": [ "#### Step 7: stop" @@ -927,7 +838,6 @@ }, { "cell_type": "markdown", - "idx_": 192, "metadata": {}, "source": [ "### Summarizing Gradient Descent" @@ -936,7 +846,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 193, "metadata": {}, "outputs": [], "source": [ @@ -948,7 +857,6 @@ }, { "cell_type": "markdown", - "idx_": 195, "metadata": {}, "source": [ "## The MNIST Loss Function" @@ -957,7 +865,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 197, "metadata": {}, "outputs": [], "source": [ @@ -967,7 +874,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 199, "metadata": {}, "outputs": [], "source": [ @@ -978,7 +884,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 201, "metadata": {}, "outputs": [], "source": [ @@ -990,7 +895,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 202, "metadata": {}, "outputs": [], "source": [ @@ -1002,7 +906,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 204, "metadata": {}, "outputs": [], "source": [ @@ -1012,7 +915,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 205, "metadata": {}, "outputs": [], "source": [ @@ -1022,7 +924,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 207, "metadata": {}, "outputs": [], "source": [ @@ -1032,7 +933,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 211, "metadata": {}, "outputs": [], "source": [ @@ -1042,7 +942,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 215, "metadata": {}, "outputs": [], "source": [ @@ -1054,7 +953,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 218, "metadata": {}, "outputs": [], "source": [ @@ -1065,7 +963,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 219, "metadata": {}, "outputs": [], "source": [ @@ -1075,7 +972,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 221, "metadata": {}, "outputs": [], "source": [ @@ -1085,7 +981,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 222, "metadata": {}, "outputs": [], "source": [ @@ -1096,7 +991,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 225, "metadata": {}, "outputs": [], "source": [ @@ -1107,7 +1001,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 227, "metadata": {}, "outputs": [], "source": [ @@ -1118,7 +1011,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 230, "metadata": {}, "outputs": [], "source": [ @@ -1128,7 +1020,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 232, "metadata": {}, "outputs": [], "source": [ @@ -1138,7 +1029,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 234, "metadata": {}, "outputs": [], "source": [ @@ -1147,7 +1037,6 @@ }, { "cell_type": "markdown", - "idx_": 236, "metadata": {}, "source": [ "### Sigmoid" @@ -1156,7 +1045,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 238, "metadata": {}, "outputs": [], "source": [ @@ -1166,7 +1054,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 240, "metadata": {}, "outputs": [], "source": [ @@ -1176,7 +1063,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 242, "metadata": {}, "outputs": [], "source": [ @@ -1187,7 +1073,6 @@ }, { "cell_type": "markdown", - "idx_": 244, "metadata": {}, "source": [ "### SGD and Mini-Batches" @@ -1196,7 +1081,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 246, "metadata": {}, "outputs": [], "source": [ @@ -1208,7 +1092,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 248, "metadata": {}, "outputs": [], "source": [ @@ -1219,7 +1102,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 250, "metadata": {}, "outputs": [], "source": [ @@ -1229,7 +1111,6 @@ }, { "cell_type": "markdown", - "idx_": 252, "metadata": {}, "source": [ "## Putting It All Together" @@ -1238,7 +1119,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 255, "metadata": {}, "outputs": [], "source": [ @@ -1249,7 +1129,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 257, "metadata": {}, "outputs": [], "source": [ @@ -1261,7 +1140,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 259, "metadata": {}, "outputs": [], "source": [ @@ -1271,7 +1149,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 261, "metadata": {}, "outputs": [], "source": [ @@ -1282,7 +1159,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 262, "metadata": {}, "outputs": [], "source": [ @@ -1293,7 +1169,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 263, "metadata": {}, "outputs": [], "source": [ @@ -1304,7 +1179,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 265, "metadata": {}, "outputs": [], "source": [ @@ -1315,7 +1189,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 267, "metadata": {}, "outputs": [], "source": [ @@ -1328,7 +1201,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 269, "metadata": {}, "outputs": [], "source": [ @@ -1339,7 +1211,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 271, "metadata": {}, "outputs": [], "source": [ @@ -1350,7 +1221,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 273, "metadata": {}, "outputs": [], "source": [ @@ -1361,7 +1231,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 276, "metadata": {}, "outputs": [], "source": [ @@ -1376,7 +1245,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 278, "metadata": {}, "outputs": [], "source": [ @@ -1386,7 +1254,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 280, "metadata": {}, "outputs": [], "source": [ @@ -1399,7 +1266,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 282, "metadata": {}, "outputs": [], "source": [ @@ -1409,7 +1275,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 284, "metadata": {}, "outputs": [], "source": [ @@ -1421,7 +1286,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 285, "metadata": {}, "outputs": [], "source": [ @@ -1431,7 +1295,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 287, "metadata": {}, "outputs": [], "source": [ @@ -1444,7 +1307,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 289, "metadata": {}, "outputs": [], "source": [ @@ -1455,7 +1317,6 @@ }, { "cell_type": "markdown", - "idx_": 291, "metadata": {}, "source": [ "### Creating an Optimizer" @@ -1464,7 +1325,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 293, "metadata": {}, "outputs": [], "source": [ @@ -1474,7 +1334,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 295, "metadata": {}, "outputs": [], "source": [ @@ -1485,7 +1344,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 297, "metadata": {}, "outputs": [], "source": [ @@ -1502,7 +1360,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 299, "metadata": {}, "outputs": [], "source": [ @@ -1512,7 +1369,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 301, "metadata": {}, "outputs": [], "source": [ @@ -1526,7 +1382,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 303, "metadata": {}, "outputs": [], "source": [ @@ -1536,7 +1391,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 305, "metadata": {}, "outputs": [], "source": [ @@ -1549,7 +1403,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 307, "metadata": {}, "outputs": [], "source": [ @@ -1559,7 +1412,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 309, "metadata": {}, "outputs": [], "source": [ @@ -1571,7 +1423,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 311, "metadata": {}, "outputs": [], "source": [ @@ -1581,7 +1432,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 313, "metadata": {}, "outputs": [], "source": [ @@ -1592,7 +1442,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 315, "metadata": {}, "outputs": [], "source": [ @@ -1601,7 +1450,6 @@ }, { "cell_type": "markdown", - "idx_": 317, "metadata": {}, "source": [ "## Adding a Nonlinearity" @@ -1610,7 +1458,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 319, "metadata": {}, "outputs": [], "source": [ @@ -1624,7 +1471,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 321, "metadata": {}, "outputs": [], "source": [ @@ -1637,7 +1483,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 323, "metadata": {}, "outputs": [], "source": [ @@ -1647,7 +1492,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 328, "metadata": {}, "outputs": [], "source": [ @@ -1661,7 +1505,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 330, "metadata": {}, "outputs": [], "source": [ @@ -1672,7 +1515,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 331, "metadata": {}, "outputs": [], "source": [ @@ -1682,7 +1524,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 333, "metadata": {}, "outputs": [], "source": [ @@ -1692,7 +1533,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 335, "metadata": {}, "outputs": [], "source": [ @@ -1701,7 +1541,6 @@ }, { "cell_type": "markdown", - "idx_": 337, "metadata": {}, "source": [ "### Going Deeper" @@ -1710,7 +1549,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 339, "metadata": {}, "outputs": [], "source": [ @@ -1722,7 +1560,6 @@ }, { "cell_type": "markdown", - "idx_": 341, "metadata": {}, "source": [ "## Jargon Recap" @@ -1730,7 +1567,6 @@ }, { "cell_type": "markdown", - "idx_": 344, "metadata": {}, "source": [ "## Questionnaire" @@ -1738,7 +1574,6 @@ }, { "cell_type": "markdown", - "idx_": 345, "metadata": {}, "source": [ "1. How is a grayscale image represented on a computer? How about a color image?\n", @@ -1782,7 +1617,6 @@ }, { "cell_type": "markdown", - "idx_": 346, "metadata": {}, "source": [ "### Further Research" @@ -1790,7 +1624,6 @@ }, { "cell_type": "markdown", - "idx_": 347, "metadata": {}, "source": [ "1. Create your own implementation of `Learner` from scratch, based on the training loop shown in this chapter.\n", @@ -1800,7 +1633,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 348, "metadata": {}, "outputs": [], "source": [] @@ -1817,6 +1649,5 @@ } }, "nbformat": 4, - "nbformat_minor": 4, - "path_": "04_mnist_basics.ipynb" + "nbformat_minor": 4 } diff --git a/clean/05_pet_breeds.ipynb b/clean/05_pet_breeds.ipynb index fb43592..4c28c54 100644 --- a/clean/05_pet_breeds.ipynb +++ b/clean/05_pet_breeds.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -26,7 +24,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# Image Classification" @@ -34,7 +31,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## From Dogs and Cats to Pet Breeds" @@ -43,7 +39,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -54,7 +49,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -65,7 +59,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 10, "metadata": {}, "outputs": [], "source": [ @@ -75,7 +68,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 12, "metadata": {}, "outputs": [], "source": [ @@ -85,7 +77,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 14, "metadata": {}, "outputs": [], "source": [ @@ -95,7 +86,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 16, "metadata": {}, "outputs": [], "source": [ @@ -105,7 +95,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -120,7 +109,6 @@ }, { "cell_type": "markdown", - "idx_": 20, "metadata": {}, "source": [ "## Presizing" @@ -129,7 +117,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 24, "metadata": {}, "outputs": [], "source": [ @@ -158,7 +145,6 @@ }, { "cell_type": "markdown", - "idx_": 26, "metadata": {}, "source": [ "### Checking and Debugging a DataBlock" @@ -167,7 +153,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 28, "metadata": {}, "outputs": [], "source": [ @@ -177,7 +162,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 30, "metadata": {}, "outputs": [], "source": [ @@ -191,7 +175,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -201,7 +184,6 @@ }, { "cell_type": "markdown", - "idx_": 35, "metadata": {}, "source": [ "## Cross-Entropy Loss" @@ -209,7 +191,6 @@ }, { "cell_type": "markdown", - "idx_": 37, "metadata": {}, "source": [ "### Viewing Activations and Labels" @@ -218,7 +199,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -228,7 +208,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -238,7 +217,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -249,7 +227,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 45, "metadata": {}, "outputs": [], "source": [ @@ -258,7 +235,6 @@ }, { "cell_type": "markdown", - "idx_": 47, "metadata": {}, "source": [ "### Softmax" @@ -267,7 +243,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -277,7 +252,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -288,7 +262,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 52, "metadata": {}, "outputs": [], "source": [ @@ -299,7 +272,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 54, "metadata": {}, "outputs": [], "source": [ @@ -309,7 +281,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 56, "metadata": {}, "outputs": [], "source": [ @@ -319,7 +290,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 60, "metadata": {}, "outputs": [], "source": [ @@ -329,7 +299,6 @@ }, { "cell_type": "markdown", - "idx_": 64, "metadata": {}, "source": [ "### Log Likelihood" @@ -338,7 +307,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 66, "metadata": {}, "outputs": [], "source": [ @@ -348,7 +316,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 68, "metadata": {}, "outputs": [], "source": [ @@ -358,7 +325,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 70, "metadata": {}, "outputs": [], "source": [ @@ -369,7 +335,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 72, "metadata": {}, "outputs": [], "source": [ @@ -388,7 +353,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -398,7 +362,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 76, "metadata": {}, "outputs": [], "source": [ @@ -407,7 +370,6 @@ }, { "cell_type": "markdown", - "idx_": 79, "metadata": {}, "source": [ "#### Taking the Log\n", @@ -418,7 +380,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 80, "metadata": {}, "outputs": [], "source": [ @@ -428,7 +389,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -438,7 +398,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 86, "metadata": {}, "outputs": [], "source": [ @@ -453,7 +412,6 @@ }, { "cell_type": "markdown", - "idx_": 89, "metadata": {}, "source": [ "### Negative Log Likelihood" @@ -462,7 +420,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 92, "metadata": {}, "outputs": [], "source": [ @@ -472,7 +429,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -482,7 +438,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -492,7 +447,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 98, "metadata": {}, "outputs": [], "source": [ @@ -501,7 +455,6 @@ }, { "cell_type": "markdown", - "idx_": 102, "metadata": {}, "source": [ "## Model Interpretation" @@ -510,7 +463,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 104, "metadata": {}, "outputs": [], "source": [ @@ -521,7 +473,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 106, "metadata": {}, "outputs": [], "source": [ @@ -530,7 +481,6 @@ }, { "cell_type": "markdown", - "idx_": 108, "metadata": {}, "source": [ "## Improving Our Model" @@ -538,7 +488,6 @@ }, { "cell_type": "markdown", - "idx_": 110, "metadata": {}, "source": [ "### The Learning Rate Finder" @@ -547,7 +496,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 112, "metadata": {}, "outputs": [], "source": [ @@ -558,7 +506,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 114, "metadata": {}, "outputs": [], "source": [ @@ -569,7 +516,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 115, "metadata": {}, "outputs": [], "source": [ @@ -579,7 +525,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 117, "metadata": {}, "outputs": [], "source": [ @@ -589,7 +534,6 @@ }, { "cell_type": "markdown", - "idx_": 121, "metadata": {}, "source": [ "### Unfreezing and Transfer Learning" @@ -598,7 +542,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 124, "metadata": {}, "outputs": [], "source": [ @@ -608,7 +551,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 125, "metadata": {}, "outputs": [], "source": [ @@ -619,7 +561,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 127, "metadata": {}, "outputs": [], "source": [ @@ -629,7 +570,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 129, "metadata": {}, "outputs": [], "source": [ @@ -639,7 +579,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 131, "metadata": {}, "outputs": [], "source": [ @@ -648,7 +587,6 @@ }, { "cell_type": "markdown", - "idx_": 133, "metadata": {}, "source": [ "### Discriminative Learning Rates" @@ -657,7 +595,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 137, "metadata": {}, "outputs": [], "source": [ @@ -670,7 +607,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 139, "metadata": {}, "outputs": [], "source": [ @@ -679,7 +615,6 @@ }, { "cell_type": "markdown", - "idx_": 142, "metadata": {}, "source": [ "### Selecting the Number of Epochs" @@ -687,7 +622,6 @@ }, { "cell_type": "markdown", - "idx_": 144, "metadata": {}, "source": [ "### Deeper Architectures" @@ -696,7 +630,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 146, "metadata": {}, "outputs": [], "source": [ @@ -707,7 +640,6 @@ }, { "cell_type": "markdown", - "idx_": 148, "metadata": {}, "source": [ "## Conclusion" @@ -715,7 +647,6 @@ }, { "cell_type": "markdown", - "idx_": 150, "metadata": {}, "source": [ "## Questionnaire" @@ -723,7 +654,6 @@ }, { "cell_type": "markdown", - "idx_": 151, "metadata": {}, "source": [ "1. Why do we first resize to a large size on the CPU, and then to a smaller size on the GPU?\n", @@ -753,7 +683,6 @@ }, { "cell_type": "markdown", - "idx_": 152, "metadata": {}, "source": [ "### Further Research" @@ -761,7 +690,6 @@ }, { "cell_type": "markdown", - "idx_": 153, "metadata": {}, "source": [ "1. Find the paper by Leslie Smith that introduced the learning rate finder, and read it.\n", @@ -771,7 +699,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 154, "metadata": {}, "outputs": [], "source": [] @@ -788,6 +715,5 @@ } }, "nbformat": 4, - "nbformat_minor": 4, - "path_": "05_pet_breeds.ipynb" + "nbformat_minor": 4 } diff --git a/clean/06_multicat.ipynb b/clean/06_multicat.ipynb index 32643a8..0e5c774 100644 --- a/clean/06_multicat.ipynb +++ b/clean/06_multicat.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -26,7 +24,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# Other Computer Vision Problems" @@ -34,7 +31,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## Multi-Label Classification" @@ -42,7 +38,6 @@ }, { "cell_type": "markdown", - "idx_": 7, "metadata": {}, "source": [ "### The Data" @@ -51,7 +46,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -62,7 +56,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -72,7 +65,6 @@ }, { "cell_type": "markdown", - "idx_": 13, "metadata": {}, "source": [ "### Sidebar: Pandas and DataFrames" @@ -81,7 +73,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -91,7 +82,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 16, "metadata": {}, "outputs": [], "source": [ @@ -104,7 +94,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -114,7 +103,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 20, "metadata": {}, "outputs": [], "source": [ @@ -125,7 +113,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 21, "metadata": {}, "outputs": [], "source": [ @@ -135,7 +122,6 @@ }, { "cell_type": "markdown", - "idx_": 23, "metadata": {}, "source": [ "### End sidebar" @@ -143,7 +129,6 @@ }, { "cell_type": "markdown", - "idx_": 25, "metadata": {}, "source": [ "### Constructing a DataBlock" @@ -152,7 +137,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -162,7 +146,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -172,7 +155,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -182,7 +164,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 34, "metadata": {}, "outputs": [], "source": [ @@ -193,7 +174,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -203,7 +183,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 37, "metadata": {}, "outputs": [], "source": [ @@ -215,7 +194,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -229,7 +207,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -243,7 +220,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 44, "metadata": {}, "outputs": [], "source": [ @@ -256,7 +232,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 48, "metadata": {}, "outputs": [], "source": [ @@ -267,7 +242,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 50, "metadata": {}, "outputs": [], "source": [ @@ -288,7 +262,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 52, "metadata": {}, "outputs": [], "source": [ @@ -303,7 +276,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 54, "metadata": {}, "outputs": [], "source": [ @@ -312,7 +284,6 @@ }, { "cell_type": "markdown", - "idx_": 57, "metadata": {}, "source": [ "### Binary Cross-Entropy" @@ -321,7 +292,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 59, "metadata": {}, "outputs": [], "source": [ @@ -331,7 +301,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 61, "metadata": {}, "outputs": [], "source": [ @@ -343,7 +312,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 63, "metadata": {}, "outputs": [], "source": [ @@ -353,7 +321,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 66, "metadata": {}, "outputs": [], "source": [ @@ -365,7 +332,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 70, "metadata": {}, "outputs": [], "source": [ @@ -377,7 +343,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -388,7 +353,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -399,7 +363,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 77, "metadata": {}, "outputs": [], "source": [ @@ -410,7 +373,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 79, "metadata": {}, "outputs": [], "source": [ @@ -421,7 +383,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 81, "metadata": {}, "outputs": [], "source": [ @@ -432,7 +393,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -442,7 +402,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 85, "metadata": {}, "outputs": [], "source": [ @@ -452,7 +411,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 87, "metadata": {}, "outputs": [], "source": [ @@ -463,7 +421,6 @@ }, { "cell_type": "markdown", - "idx_": 89, "metadata": {}, "source": [ "## Regression" @@ -471,7 +428,6 @@ }, { "cell_type": "markdown", - "idx_": 91, "metadata": {}, "source": [ "### Assemble the Data" @@ -480,7 +436,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 93, "metadata": {}, "outputs": [], "source": [ @@ -490,7 +445,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -501,7 +455,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -511,7 +464,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 98, "metadata": {}, "outputs": [], "source": [ @@ -521,7 +473,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 100, "metadata": {}, "outputs": [], "source": [ @@ -533,7 +484,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 102, "metadata": {}, "outputs": [], "source": [ @@ -544,7 +494,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 103, "metadata": {}, "outputs": [], "source": [ @@ -554,7 +503,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 105, "metadata": {}, "outputs": [], "source": [ @@ -569,7 +517,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 107, "metadata": {}, "outputs": [], "source": [ @@ -579,7 +526,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 109, "metadata": {}, "outputs": [], "source": [ @@ -595,7 +541,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 112, "metadata": {}, "outputs": [], "source": [ @@ -606,7 +551,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 114, "metadata": {}, "outputs": [], "source": [ @@ -617,7 +561,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 117, "metadata": {}, "outputs": [], "source": [ @@ -626,7 +569,6 @@ }, { "cell_type": "markdown", - "idx_": 120, "metadata": {}, "source": [ "### Training a Model" @@ -635,7 +577,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 122, "metadata": {}, "outputs": [], "source": [ @@ -645,7 +586,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 124, "metadata": {}, "outputs": [], "source": [ @@ -655,7 +595,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 126, "metadata": {}, "outputs": [], "source": [ @@ -665,7 +604,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 128, "metadata": {}, "outputs": [], "source": [ @@ -675,7 +613,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 130, "metadata": {}, "outputs": [], "source": [ @@ -685,7 +622,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 132, "metadata": {}, "outputs": [], "source": [ @@ -696,7 +632,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 134, "metadata": {}, "outputs": [], "source": [ @@ -706,7 +641,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 136, "metadata": {}, "outputs": [], "source": [ @@ -715,7 +649,6 @@ }, { "cell_type": "markdown", - "idx_": 138, "metadata": {}, "source": [ "## Conclusion" @@ -723,7 +656,6 @@ }, { "cell_type": "markdown", - "idx_": 140, "metadata": {}, "source": [ "## Questionnaire" @@ -731,7 +663,6 @@ }, { "cell_type": "markdown", - "idx_": 141, "metadata": {}, "source": [ "1. How could multi-label classification improve the usability of the bear classifier?\n", @@ -755,7 +686,6 @@ }, { "cell_type": "markdown", - "idx_": 142, "metadata": {}, "source": [ "### Further Research" @@ -763,7 +693,6 @@ }, { "cell_type": "markdown", - "idx_": 143, "metadata": {}, "source": [ "1. Read a tutorial about Pandas DataFrames and experiment with a few methods that look interesting to you. See the book's website for recommended tutorials.\n", @@ -773,7 +702,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 144, "metadata": {}, "outputs": [], "source": [] @@ -790,6 +718,5 @@ } }, "nbformat": 4, - "nbformat_minor": 4, - "path_": "06_multicat.ipynb" + "nbformat_minor": 4 } diff --git a/clean/07_sizing_and_tta.ipynb b/clean/07_sizing_and_tta.ipynb index 5398d76..aedad6a 100644 --- a/clean/07_sizing_and_tta.ipynb +++ b/clean/07_sizing_and_tta.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -26,7 +24,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# Training a State-of-the-Art Model" @@ -34,7 +31,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## Imagenette" @@ -43,7 +39,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -54,7 +49,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -69,7 +63,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -80,7 +73,6 @@ }, { "cell_type": "markdown", - "idx_": 13, "metadata": {}, "source": [ "## Normalization" @@ -89,7 +81,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -100,7 +91,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -117,7 +107,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -127,7 +116,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 19, "metadata": {}, "outputs": [], "source": [ @@ -138,7 +126,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 21, "metadata": {}, "outputs": [], "source": [ @@ -149,7 +136,6 @@ }, { "cell_type": "markdown", - "idx_": 23, "metadata": {}, "source": [ "## Progressive Resizing" @@ -158,7 +144,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -171,7 +156,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -181,7 +165,6 @@ }, { "cell_type": "markdown", - "idx_": 31, "metadata": {}, "source": [ "## Test Time Augmentation" @@ -190,7 +173,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 35, "metadata": {}, "outputs": [], "source": [ @@ -200,7 +182,6 @@ }, { "cell_type": "markdown", - "idx_": 37, "metadata": {}, "source": [ "## Mixup" @@ -208,7 +189,6 @@ }, { "cell_type": "markdown", - "idx_": 40, "metadata": {}, "source": [ "### Sidebar: Papers and Math" @@ -216,7 +196,6 @@ }, { "cell_type": "markdown", - "idx_": 42, "metadata": {}, "source": [ "### End sidebar" @@ -225,7 +204,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 44, "metadata": {}, "outputs": [], "source": [ @@ -244,7 +222,6 @@ }, { "cell_type": "markdown", - "idx_": 48, "metadata": {}, "source": [ "## Label Smoothing" @@ -252,7 +229,6 @@ }, { "cell_type": "markdown", - "idx_": 50, "metadata": {}, "source": [ "### Sidebar: Label Smoothing, the Paper" @@ -260,7 +236,6 @@ }, { "cell_type": "markdown", - "idx_": 53, "metadata": {}, "source": [ "### End sidebar" @@ -268,7 +243,6 @@ }, { "cell_type": "markdown", - "idx_": 55, "metadata": {}, "source": [ "## Conclusion" @@ -276,7 +250,6 @@ }, { "cell_type": "markdown", - "idx_": 57, "metadata": {}, "source": [ "## Questionnaire" @@ -284,7 +257,6 @@ }, { "cell_type": "markdown", - "idx_": 58, "metadata": {}, "source": [ "1. What is the difference between ImageNet and Imagenette? When is it better to experiment on one versus the other?\n", @@ -305,7 +277,6 @@ }, { "cell_type": "markdown", - "idx_": 59, "metadata": {}, "source": [ "### Further Research\n", @@ -319,7 +290,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 60, "metadata": {}, "outputs": [], "source": [] @@ -336,6 +306,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2, - "path_": "07_sizing_and_tta.ipynb" + "nbformat_minor": 2 } diff --git a/clean/08_collab.ipynb b/clean/08_collab.ipynb index 30c1013..e879a7e 100644 --- a/clean/08_collab.ipynb +++ b/clean/08_collab.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -26,7 +24,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# Collaborative Filtering Deep Dive" @@ -34,7 +31,6 @@ }, { "cell_type": "markdown", - "idx_": 6, "metadata": {}, "source": [ "## A First Look at the Data" @@ -43,7 +39,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -55,7 +50,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -67,7 +61,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -77,7 +70,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -87,7 +79,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 19, "metadata": {}, "outputs": [], "source": [ @@ -97,7 +88,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 23, "metadata": {}, "outputs": [], "source": [ @@ -107,7 +97,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -116,7 +105,6 @@ }, { "cell_type": "markdown", - "idx_": 27, "metadata": {}, "source": [ "## Learning the Latent Factors" @@ -124,7 +112,6 @@ }, { "cell_type": "markdown", - "idx_": 32, "metadata": {}, "source": [ "## Creating the DataLoaders" @@ -133,7 +120,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 34, "metadata": {}, "outputs": [], "source": [ @@ -145,7 +131,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -156,7 +141,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -167,7 +151,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -177,7 +160,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -192,7 +174,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -202,7 +183,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 44, "metadata": {}, "outputs": [], "source": [ @@ -212,7 +192,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 46, "metadata": {}, "outputs": [], "source": [ @@ -221,7 +200,6 @@ }, { "cell_type": "markdown", - "idx_": 50, "metadata": {}, "source": [ "## Collaborative Filtering from Scratch" @@ -230,7 +208,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 52, "metadata": {}, "outputs": [], "source": [ @@ -242,7 +219,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 54, "metadata": {}, "outputs": [], "source": [ @@ -253,7 +229,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 56, "metadata": {}, "outputs": [], "source": [ @@ -271,7 +246,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 58, "metadata": {}, "outputs": [], "source": [ @@ -282,7 +256,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 60, "metadata": {}, "outputs": [], "source": [ @@ -293,7 +266,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 62, "metadata": {}, "outputs": [], "source": [ @@ -303,7 +275,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 64, "metadata": {}, "outputs": [], "source": [ @@ -322,7 +293,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -334,7 +304,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -357,7 +326,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -368,7 +336,6 @@ }, { "cell_type": "markdown", - "idx_": 71, "metadata": {}, "source": [ "### Weight Decay" @@ -377,7 +344,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -393,7 +359,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -404,7 +369,6 @@ }, { "cell_type": "markdown", - "idx_": 77, "metadata": {}, "source": [ "### Creating Our Own Embedding Module" @@ -413,7 +377,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 79, "metadata": {}, "outputs": [], "source": [ @@ -426,7 +389,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 81, "metadata": {}, "outputs": [], "source": [ @@ -439,7 +401,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -453,7 +414,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 84, "metadata": {}, "outputs": [], "source": [ @@ -463,7 +423,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 86, "metadata": {}, "outputs": [], "source": [ @@ -474,7 +433,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 88, "metadata": {}, "outputs": [], "source": [ @@ -497,7 +455,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 90, "metadata": {}, "outputs": [], "source": [ @@ -508,7 +465,6 @@ }, { "cell_type": "markdown", - "idx_": 92, "metadata": {}, "source": [ "## Interpreting Embeddings and Biases" @@ -517,7 +473,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -529,7 +484,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -540,7 +494,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 98, "metadata": {}, "outputs": [], "source": [ @@ -562,7 +515,6 @@ }, { "cell_type": "markdown", - "idx_": 102, "metadata": {}, "source": [ "### Using fastai.collab" @@ -571,7 +523,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 104, "metadata": {}, "outputs": [], "source": [ @@ -581,7 +532,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 105, "metadata": {}, "outputs": [], "source": [ @@ -591,7 +541,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 107, "metadata": {}, "outputs": [], "source": [ @@ -601,7 +550,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 109, "metadata": {}, "outputs": [], "source": [ @@ -612,7 +560,6 @@ }, { "cell_type": "markdown", - "idx_": 111, "metadata": {}, "source": [ "### Embedding Distance" @@ -621,7 +568,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 113, "metadata": {}, "outputs": [], "source": [ @@ -634,7 +580,6 @@ }, { "cell_type": "markdown", - "idx_": 115, "metadata": {}, "source": [ "## Bootstrapping a Collaborative Filtering Model" @@ -642,7 +587,6 @@ }, { "cell_type": "markdown", - "idx_": 119, "metadata": {}, "source": [ "## Deep Learning for Collaborative Filtering" @@ -651,7 +595,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 121, "metadata": {}, "outputs": [], "source": [ @@ -662,7 +605,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 123, "metadata": {}, "outputs": [], "source": [ @@ -685,7 +627,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 125, "metadata": {}, "outputs": [], "source": [ @@ -695,7 +636,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 127, "metadata": {}, "outputs": [], "source": [ @@ -706,7 +646,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 129, "metadata": {}, "outputs": [], "source": [ @@ -717,7 +656,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 131, "metadata": {}, "outputs": [], "source": [ @@ -729,7 +667,6 @@ }, { "cell_type": "markdown", - "idx_": 133, "metadata": {}, "source": [ "### Sidebar: kwargs and Delegates" @@ -737,7 +674,6 @@ }, { "cell_type": "markdown", - "idx_": 135, "metadata": {}, "source": [ "### End sidebar" @@ -745,7 +681,6 @@ }, { "cell_type": "markdown", - "idx_": 137, "metadata": {}, "source": [ "## Conclusion" @@ -753,7 +688,6 @@ }, { "cell_type": "markdown", - "idx_": 139, "metadata": {}, "source": [ "## Questionnaire" @@ -761,7 +695,6 @@ }, { "cell_type": "markdown", - "idx_": 140, "metadata": {}, "source": [ "1. What problem does collaborative filtering solve?\n", @@ -799,7 +732,6 @@ }, { "cell_type": "markdown", - "idx_": 141, "metadata": {}, "source": [ "### Further Research\n", @@ -813,7 +745,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 142, "metadata": {}, "outputs": [], "source": [] @@ -830,6 +761,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2, - "path_": "08_collab.ipynb" + "nbformat_minor": 2 } diff --git a/clean/09_tabular.ipynb b/clean/09_tabular.ipynb index aaf8f6a..c16bd15 100644 --- a/clean/09_tabular.ipynb +++ b/clean/09_tabular.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -35,7 +33,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# Tabular Modeling Deep Dive" @@ -43,7 +40,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## Categorical Embeddings" @@ -51,7 +47,6 @@ }, { "cell_type": "markdown", - "idx_": 21, "metadata": {}, "source": [ "## Beyond Deep Learning" @@ -59,7 +54,6 @@ }, { "cell_type": "markdown", - "idx_": 25, "metadata": {}, "source": [ "## The Dataset" @@ -67,7 +61,6 @@ }, { "cell_type": "markdown", - "idx_": 27, "metadata": {}, "source": [ "### Kaggle Competitions" @@ -76,7 +69,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -86,7 +78,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -100,7 +91,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -112,7 +102,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 34, "metadata": {}, "outputs": [], "source": [ @@ -123,7 +112,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -139,7 +127,6 @@ }, { "cell_type": "markdown", - "idx_": 38, "metadata": {}, "source": [ "### Look at the Data" @@ -148,7 +135,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -158,7 +144,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -168,7 +153,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -178,7 +162,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 45, "metadata": {}, "outputs": [], "source": [ @@ -188,7 +171,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 46, "metadata": {}, "outputs": [], "source": [ @@ -199,7 +181,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 48, "metadata": {}, "outputs": [], "source": [ @@ -209,7 +190,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -218,7 +198,6 @@ }, { "cell_type": "markdown", - "idx_": 51, "metadata": {}, "source": [ "## Decision Trees" @@ -226,7 +205,6 @@ }, { "cell_type": "markdown", - "idx_": 56, "metadata": {}, "source": [ "### Handling Dates" @@ -235,7 +213,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 58, "metadata": {}, "outputs": [], "source": [ @@ -245,7 +222,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 60, "metadata": {}, "outputs": [], "source": [ @@ -256,7 +232,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 62, "metadata": {}, "outputs": [], "source": [ @@ -265,7 +240,6 @@ }, { "cell_type": "markdown", - "idx_": 64, "metadata": {}, "source": [ "### Using TabularPandas and TabularProc" @@ -274,7 +248,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 66, "metadata": {}, "outputs": [], "source": [ @@ -284,7 +257,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 68, "metadata": {}, "outputs": [], "source": [ @@ -298,7 +270,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 70, "metadata": {}, "outputs": [], "source": [ @@ -308,7 +279,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -318,7 +288,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -328,7 +297,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -338,7 +306,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 76, "metadata": {}, "outputs": [], "source": [ @@ -349,7 +316,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 78, "metadata": {}, "outputs": [], "source": [ @@ -359,7 +325,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 79, "metadata": {}, "outputs": [], "source": [ @@ -369,7 +334,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 81, "metadata": {}, "outputs": [], "source": [ @@ -379,7 +343,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -388,7 +351,6 @@ }, { "cell_type": "markdown", - "idx_": 86, "metadata": {}, "source": [ "### Creating the Decision Tree" @@ -397,7 +359,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 88, "metadata": {}, "outputs": [], "source": [ @@ -408,7 +369,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 89, "metadata": {}, "outputs": [], "source": [ @@ -419,7 +379,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 91, "metadata": {}, "outputs": [], "source": [ @@ -430,7 +389,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 93, "metadata": {}, "outputs": [], "source": [ @@ -440,7 +398,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -453,7 +410,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 98, "metadata": {}, "outputs": [], "source": [ @@ -464,7 +420,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 100, "metadata": {}, "outputs": [], "source": [ @@ -478,7 +433,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 102, "metadata": {}, "outputs": [], "source": [ @@ -489,7 +443,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 104, "metadata": {}, "outputs": [], "source": [ @@ -500,7 +453,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 105, "metadata": {}, "outputs": [], "source": [ @@ -510,7 +462,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 107, "metadata": {}, "outputs": [], "source": [ @@ -520,7 +471,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 109, "metadata": {}, "outputs": [], "source": [ @@ -530,7 +480,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 111, "metadata": {}, "outputs": [], "source": [ @@ -542,7 +491,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 113, "metadata": {}, "outputs": [], "source": [ @@ -551,7 +499,6 @@ }, { "cell_type": "markdown", - "idx_": 117, "metadata": {}, "source": [ "### Categorical Variables" @@ -559,7 +506,6 @@ }, { "cell_type": "markdown", - "idx_": 121, "metadata": {}, "source": [ "## Random Forests" @@ -568,7 +514,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 123, "metadata": {}, "outputs": [], "source": [ @@ -578,7 +523,6 @@ }, { "cell_type": "markdown", - "idx_": 124, "metadata": {}, "source": [ "### Creating a Random Forest" @@ -587,7 +531,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 126, "metadata": {}, "outputs": [], "source": [ @@ -601,7 +544,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 127, "metadata": {}, "outputs": [], "source": [ @@ -611,7 +553,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 129, "metadata": {}, "outputs": [], "source": [ @@ -621,7 +562,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 133, "metadata": {}, "outputs": [], "source": [ @@ -631,7 +571,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 135, "metadata": {}, "outputs": [], "source": [ @@ -641,7 +580,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 137, "metadata": {}, "outputs": [], "source": [ @@ -650,7 +588,6 @@ }, { "cell_type": "markdown", - "idx_": 139, "metadata": {}, "source": [ "### Out-of-Bag Error" @@ -659,7 +596,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 141, "metadata": {}, "outputs": [], "source": [ @@ -668,7 +604,6 @@ }, { "cell_type": "markdown", - "idx_": 144, "metadata": {}, "source": [ "## Model Interpretation" @@ -676,7 +611,6 @@ }, { "cell_type": "markdown", - "idx_": 146, "metadata": {}, "source": [ "### Tree Variance for Prediction Confidence" @@ -685,7 +619,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 148, "metadata": {}, "outputs": [], "source": [ @@ -695,7 +628,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 149, "metadata": {}, "outputs": [], "source": [ @@ -705,7 +637,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 151, "metadata": {}, "outputs": [], "source": [ @@ -715,7 +646,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 153, "metadata": {}, "outputs": [], "source": [ @@ -724,7 +654,6 @@ }, { "cell_type": "markdown", - "idx_": 155, "metadata": {}, "source": [ "### Feature Importance" @@ -733,7 +662,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 157, "metadata": {}, "outputs": [], "source": [ @@ -745,7 +673,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 159, "metadata": {}, "outputs": [], "source": [ @@ -756,7 +683,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 161, "metadata": {}, "outputs": [], "source": [ @@ -768,7 +694,6 @@ }, { "cell_type": "markdown", - "idx_": 163, "metadata": {}, "source": [ "### Removing Low-Importance Variables" @@ -777,7 +702,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 165, "metadata": {}, "outputs": [], "source": [ @@ -788,7 +712,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 167, "metadata": {}, "outputs": [], "source": [ @@ -799,7 +722,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 168, "metadata": {}, "outputs": [], "source": [ @@ -809,7 +731,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 170, "metadata": {}, "outputs": [], "source": [ @@ -819,7 +740,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 172, "metadata": {}, "outputs": [], "source": [ @@ -829,7 +749,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 174, "metadata": {}, "outputs": [], "source": [ @@ -838,7 +757,6 @@ }, { "cell_type": "markdown", - "idx_": 176, "metadata": {}, "source": [ "### Removing Redundant Features" @@ -847,7 +765,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 178, "metadata": {}, "outputs": [], "source": [ @@ -857,7 +774,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 180, "metadata": {}, "outputs": [], "source": [ @@ -871,7 +787,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 182, "metadata": {}, "outputs": [], "source": [ @@ -881,7 +796,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 184, "metadata": {}, "outputs": [], "source": [ @@ -894,7 +808,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 186, "metadata": {}, "outputs": [], "source": [ @@ -905,7 +818,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 188, "metadata": {}, "outputs": [], "source": [ @@ -916,7 +828,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 189, "metadata": {}, "outputs": [], "source": [ @@ -927,7 +838,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 191, "metadata": {}, "outputs": [], "source": [ @@ -938,7 +848,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 193, "metadata": {}, "outputs": [], "source": [ @@ -948,7 +857,6 @@ }, { "cell_type": "markdown", - "idx_": 195, "metadata": {}, "source": [ "### Partial Dependence" @@ -957,7 +865,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 197, "metadata": {}, "outputs": [], "source": [ @@ -969,7 +876,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 199, "metadata": {}, "outputs": [], "source": [ @@ -979,7 +885,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 201, "metadata": {}, "outputs": [], "source": [ @@ -992,7 +897,6 @@ }, { "cell_type": "markdown", - "idx_": 203, "metadata": {}, "source": [ "### Data Leakage" @@ -1000,7 +904,6 @@ }, { "cell_type": "markdown", - "idx_": 205, "metadata": {}, "source": [ "### Tree Interpreter" @@ -1009,7 +912,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 206, "metadata": {}, "outputs": [], "source": [ @@ -1024,7 +926,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 209, "metadata": {}, "outputs": [], "source": [ @@ -1034,7 +935,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 211, "metadata": {}, "outputs": [], "source": [ @@ -1044,7 +944,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 213, "metadata": {}, "outputs": [], "source": [ @@ -1054,7 +953,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 215, "metadata": {}, "outputs": [], "source": [ @@ -1064,7 +962,6 @@ }, { "cell_type": "markdown", - "idx_": 218, "metadata": {}, "source": [ "## Extrapolation and Neural Networks" @@ -1072,7 +969,6 @@ }, { "cell_type": "markdown", - "idx_": 220, "metadata": {}, "source": [ "### The Extrapolation Problem" @@ -1081,7 +977,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 221, "metadata": {}, "outputs": [], "source": [ @@ -1092,7 +987,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 223, "metadata": {}, "outputs": [], "source": [ @@ -1104,7 +998,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 225, "metadata": {}, "outputs": [], "source": [ @@ -1115,7 +1008,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 227, "metadata": {}, "outputs": [], "source": [ @@ -1125,7 +1017,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 229, "metadata": {}, "outputs": [], "source": [ @@ -1135,7 +1026,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 231, "metadata": {}, "outputs": [], "source": [ @@ -1145,7 +1035,6 @@ }, { "cell_type": "markdown", - "idx_": 233, "metadata": {}, "source": [ "### Finding Out-of-Domain Data" @@ -1154,7 +1043,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 235, "metadata": {}, "outputs": [], "source": [ @@ -1168,7 +1056,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 237, "metadata": {}, "outputs": [], "source": [ @@ -1183,7 +1070,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 239, "metadata": {}, "outputs": [], "source": [ @@ -1198,7 +1084,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 241, "metadata": {}, "outputs": [], "source": [ @@ -1208,7 +1093,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 243, "metadata": {}, "outputs": [], "source": [ @@ -1220,7 +1104,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 244, "metadata": {}, "outputs": [], "source": [ @@ -1230,7 +1113,6 @@ }, { "cell_type": "markdown", - "idx_": 246, "metadata": {}, "source": [ "### Using a Neural Network" @@ -1239,7 +1121,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 248, "metadata": {}, "outputs": [], "source": [ @@ -1253,7 +1134,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 250, "metadata": {}, "outputs": [], "source": [ @@ -1263,7 +1143,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 252, "metadata": {}, "outputs": [], "source": [ @@ -1273,7 +1152,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 254, "metadata": {}, "outputs": [], "source": [ @@ -1283,7 +1161,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 256, "metadata": {}, "outputs": [], "source": [ @@ -1293,7 +1170,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 258, "metadata": {}, "outputs": [], "source": [ @@ -1306,7 +1182,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 260, "metadata": {}, "outputs": [], "source": [ @@ -1316,7 +1191,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 262, "metadata": {}, "outputs": [], "source": [ @@ -1328,7 +1202,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 264, "metadata": {}, "outputs": [], "source": [ @@ -1338,7 +1211,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 266, "metadata": {}, "outputs": [], "source": [ @@ -1349,7 +1221,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 268, "metadata": {}, "outputs": [], "source": [ @@ -1360,7 +1231,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 269, "metadata": {}, "outputs": [], "source": [ @@ -1370,7 +1240,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 271, "metadata": {}, "outputs": [], "source": [ @@ -1380,7 +1249,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 273, "metadata": {}, "outputs": [], "source": [ @@ -1391,7 +1259,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 275, "metadata": {}, "outputs": [], "source": [ @@ -1400,7 +1267,6 @@ }, { "cell_type": "markdown", - "idx_": 276, "metadata": {}, "source": [ "### Sidebar: fastai's Tabular Classes" @@ -1408,7 +1274,6 @@ }, { "cell_type": "markdown", - "idx_": 278, "metadata": {}, "source": [ "### End sidebar" @@ -1416,7 +1281,6 @@ }, { "cell_type": "markdown", - "idx_": 280, "metadata": {}, "source": [ "## Ensembling" @@ -1425,7 +1289,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 282, "metadata": {}, "outputs": [], "source": [ @@ -1436,7 +1299,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 284, "metadata": {}, "outputs": [], "source": [ @@ -1445,7 +1307,6 @@ }, { "cell_type": "markdown", - "idx_": 286, "metadata": {}, "source": [ "### Boosting" @@ -1453,7 +1314,6 @@ }, { "cell_type": "markdown", - "idx_": 289, "metadata": {}, "source": [ "### Combining Embeddings with Other Methods" @@ -1461,7 +1321,6 @@ }, { "cell_type": "markdown", - "idx_": 293, "metadata": {}, "source": [ "## Conclusion: Our Advice for Tabular Modeling" @@ -1469,7 +1328,6 @@ }, { "cell_type": "markdown", - "idx_": 295, "metadata": {}, "source": [ "## Questionnaire" @@ -1477,7 +1335,6 @@ }, { "cell_type": "markdown", - "idx_": 296, "metadata": {}, "source": [ "1. What is a continuous variable?\n", @@ -1518,7 +1375,6 @@ }, { "cell_type": "markdown", - "idx_": 297, "metadata": {}, "source": [ "### Further Research" @@ -1526,7 +1382,6 @@ }, { "cell_type": "markdown", - "idx_": 298, "metadata": {}, "source": [ "1. Pick a competition on Kaggle with tabular data (current or past) and try to adapt the techniques seen in this chapter to get the best possible results. Compare your results to the private leaderboard.\n", @@ -1538,7 +1393,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 299, "metadata": {}, "outputs": [], "source": [] @@ -1552,6 +1406,5 @@ } }, "nbformat": 4, - "nbformat_minor": 4, - "path_": "09_tabular.ipynb" + "nbformat_minor": 4 } diff --git a/clean/10_nlp.ipynb b/clean/10_nlp.ipynb index 82c2dae..aab1b90 100644 --- a/clean/10_nlp.ipynb +++ b/clean/10_nlp.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -27,7 +25,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# NLP Deep Dive: RNNs" @@ -35,7 +32,6 @@ }, { "cell_type": "markdown", - "idx_": 9, "metadata": {}, "source": [ "## Text Preprocessing" @@ -43,7 +39,6 @@ }, { "cell_type": "markdown", - "idx_": 12, "metadata": {}, "source": [ "### Tokenization" @@ -51,7 +46,6 @@ }, { "cell_type": "markdown", - "idx_": 15, "metadata": {}, "source": [ "### Word Tokenization with fastai" @@ -60,7 +54,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -71,7 +64,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 19, "metadata": {}, "outputs": [], "source": [ @@ -81,7 +73,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 21, "metadata": {}, "outputs": [], "source": [ @@ -91,7 +82,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 23, "metadata": {}, "outputs": [], "source": [ @@ -103,7 +93,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -113,7 +102,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -124,7 +112,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -134,7 +121,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 32, "metadata": {}, "outputs": [], "source": [ @@ -143,7 +129,6 @@ }, { "cell_type": "markdown", - "idx_": 34, "metadata": {}, "source": [ "### Subword Tokenization" @@ -152,7 +137,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -162,7 +146,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -175,7 +158,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -185,7 +167,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -195,7 +176,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 44, "metadata": {}, "outputs": [], "source": [ @@ -204,7 +184,6 @@ }, { "cell_type": "markdown", - "idx_": 47, "metadata": {}, "source": [ "### Numericalization with fastai" @@ -213,7 +192,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -224,7 +202,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -235,7 +212,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 53, "metadata": {}, "outputs": [], "source": [ @@ -247,7 +223,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 55, "metadata": {}, "outputs": [], "source": [ @@ -257,7 +232,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 57, "metadata": {}, "outputs": [], "source": [ @@ -266,7 +240,6 @@ }, { "cell_type": "markdown", - "idx_": 59, "metadata": {}, "source": [ "### Putting Our Texts into Batches for a Language Model" @@ -275,7 +248,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 61, "metadata": {}, "outputs": [], "source": [ @@ -290,7 +262,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 63, "metadata": {}, "outputs": [], "source": [ @@ -303,7 +274,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -316,7 +286,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -329,7 +298,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -339,7 +307,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -349,7 +316,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -360,7 +326,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -370,7 +335,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 77, "metadata": {}, "outputs": [], "source": [ @@ -379,7 +343,6 @@ }, { "cell_type": "markdown", - "idx_": 79, "metadata": {}, "source": [ "## Training a Text Classifier" @@ -387,7 +350,6 @@ }, { "cell_type": "markdown", - "idx_": 81, "metadata": {}, "source": [ "### Language Model Using DataBlock" @@ -396,7 +358,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 83, "metadata": {}, "outputs": [], "source": [ @@ -411,7 +372,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 85, "metadata": {}, "outputs": [], "source": [ @@ -420,7 +380,6 @@ }, { "cell_type": "markdown", - "idx_": 87, "metadata": {}, "source": [ "### Fine-Tuning the Language Model" @@ -429,7 +388,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 89, "metadata": {}, "outputs": [], "source": [ @@ -441,7 +399,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 93, "metadata": {}, "outputs": [], "source": [ @@ -450,7 +407,6 @@ }, { "cell_type": "markdown", - "idx_": 95, "metadata": {}, "source": [ "### Saving and Loading Models" @@ -459,7 +415,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 97, "metadata": {}, "outputs": [], "source": [ @@ -469,7 +424,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 99, "metadata": {}, "outputs": [], "source": [ @@ -479,7 +433,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 101, "metadata": {}, "outputs": [], "source": [ @@ -490,7 +443,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 103, "metadata": {}, "outputs": [], "source": [ @@ -499,7 +451,6 @@ }, { "cell_type": "markdown", - "idx_": 106, "metadata": {}, "source": [ "### Text Generation" @@ -508,7 +459,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 108, "metadata": {}, "outputs": [], "source": [ @@ -522,7 +472,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 109, "metadata": {}, "outputs": [], "source": [ @@ -531,7 +480,6 @@ }, { "cell_type": "markdown", - "idx_": 111, "metadata": {}, "source": [ "### Creating the Classifier DataLoaders" @@ -540,7 +488,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 113, "metadata": {}, "outputs": [], "source": [ @@ -555,7 +502,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 115, "metadata": {}, "outputs": [], "source": [ @@ -565,7 +511,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 117, "metadata": {}, "outputs": [], "source": [ @@ -575,7 +520,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 119, "metadata": {}, "outputs": [], "source": [ @@ -585,7 +529,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 121, "metadata": {}, "outputs": [], "source": [ @@ -596,7 +539,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 123, "metadata": {}, "outputs": [], "source": [ @@ -605,7 +547,6 @@ }, { "cell_type": "markdown", - "idx_": 124, "metadata": {}, "source": [ "### Fine-Tuning the Classifier" @@ -614,7 +555,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 126, "metadata": {}, "outputs": [], "source": [ @@ -624,7 +564,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 128, "metadata": {}, "outputs": [], "source": [ @@ -635,7 +574,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 130, "metadata": {}, "outputs": [], "source": [ @@ -646,7 +584,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 132, "metadata": {}, "outputs": [], "source": [ @@ -656,7 +593,6 @@ }, { "cell_type": "markdown", - "idx_": 134, "metadata": {}, "source": [ "## Disinformation and Language Models" @@ -664,7 +600,6 @@ }, { "cell_type": "markdown", - "idx_": 142, "metadata": {}, "source": [ "## Conclusion" @@ -672,7 +607,6 @@ }, { "cell_type": "markdown", - "idx_": 144, "metadata": {}, "source": [ "## Questionnaire" @@ -680,7 +614,6 @@ }, { "cell_type": "markdown", - "idx_": 145, "metadata": {}, "source": [ "1. What is \"self-supervised learning\"?\n", @@ -709,7 +642,6 @@ }, { "cell_type": "markdown", - "idx_": 146, "metadata": {}, "source": [ "### Further Research" @@ -717,7 +649,6 @@ }, { "cell_type": "markdown", - "idx_": 147, "metadata": {}, "source": [ "1. See what you can learn about language models and disinformation. What are the best language models today? Take a look at some of their outputs. Do you find them convincing? How could a bad actor best use such a model to create conflict and uncertainty?\n", @@ -727,7 +658,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 148, "metadata": {}, "outputs": [], "source": [] @@ -744,6 +674,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2, - "path_": "10_nlp.ipynb" + "nbformat_minor": 2 } diff --git a/clean/11_midlevel_data.ipynb b/clean/11_midlevel_data.ipynb index d22437b..58a0df5 100644 --- a/clean/11_midlevel_data.ipynb +++ b/clean/11_midlevel_data.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -27,7 +25,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# Data Munging with fastai's Mid-Level API" @@ -35,7 +32,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## Going Deeper into fastai's Layered API" @@ -44,7 +40,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -56,7 +51,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -71,7 +65,6 @@ }, { "cell_type": "markdown", - "idx_": 12, "metadata": {}, "source": [ "### Transforms" @@ -80,7 +73,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 14, "metadata": {}, "outputs": [], "source": [ @@ -91,7 +83,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 16, "metadata": {}, "outputs": [], "source": [ @@ -104,7 +95,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -117,7 +107,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 20, "metadata": {}, "outputs": [], "source": [ @@ -127,7 +116,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 22, "metadata": {}, "outputs": [], "source": [ @@ -137,7 +125,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 24, "metadata": {}, "outputs": [], "source": [ @@ -146,7 +133,6 @@ }, { "cell_type": "markdown", - "idx_": 25, "metadata": {}, "source": [ "### Writing Your Own Transform" @@ -155,7 +141,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -167,7 +152,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -179,7 +163,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -192,7 +175,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -206,7 +188,6 @@ }, { "cell_type": "markdown", - "idx_": 35, "metadata": {}, "source": [ "### Pipeline" @@ -215,7 +196,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 37, "metadata": {}, "outputs": [], "source": [ @@ -226,7 +206,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -235,7 +214,6 @@ }, { "cell_type": "markdown", - "idx_": 41, "metadata": {}, "source": [ "## TfmdLists and Datasets: Transformed Collections" @@ -243,7 +221,6 @@ }, { "cell_type": "markdown", - "idx_": 43, "metadata": {}, "source": [ "### TfmdLists" @@ -252,7 +229,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 45, "metadata": {}, "outputs": [], "source": [ @@ -262,7 +238,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 47, "metadata": {}, "outputs": [], "source": [ @@ -272,7 +247,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -282,7 +256,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -292,7 +265,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 53, "metadata": {}, "outputs": [], "source": [ @@ -305,7 +277,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 55, "metadata": {}, "outputs": [], "source": [ @@ -315,7 +286,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 57, "metadata": {}, "outputs": [], "source": [ @@ -326,7 +296,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 59, "metadata": {}, "outputs": [], "source": [ @@ -338,7 +307,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 61, "metadata": {}, "outputs": [], "source": [ @@ -348,7 +316,6 @@ }, { "cell_type": "markdown", - "idx_": 63, "metadata": {}, "source": [ "### Datasets" @@ -357,7 +324,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -371,7 +337,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -385,7 +350,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -396,7 +360,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -406,7 +369,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 74, "metadata": {}, "outputs": [], "source": [ @@ -420,7 +382,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 76, "metadata": {}, "outputs": [], "source": [ @@ -435,7 +396,6 @@ }, { "cell_type": "markdown", - "idx_": 78, "metadata": {}, "source": [ "## Applying the Mid-Level Data API: SiamesePair" @@ -444,7 +404,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 80, "metadata": {}, "outputs": [], "source": [ @@ -456,7 +415,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 82, "metadata": {}, "outputs": [], "source": [ @@ -476,7 +434,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 84, "metadata": {}, "outputs": [], "source": [ @@ -488,7 +445,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 86, "metadata": {}, "outputs": [], "source": [ @@ -500,7 +456,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 88, "metadata": {}, "outputs": [], "source": [ @@ -511,7 +466,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 90, "metadata": {}, "outputs": [], "source": [ @@ -522,7 +476,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 92, "metadata": {}, "outputs": [], "source": [ @@ -550,7 +503,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -562,7 +514,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -573,7 +524,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 98, "metadata": {}, "outputs": [], "source": [ @@ -583,7 +533,6 @@ }, { "cell_type": "markdown", - "idx_": 101, "metadata": {}, "source": [ "## Conclusion" @@ -591,7 +540,6 @@ }, { "cell_type": "markdown", - "idx_": 103, "metadata": {}, "source": [ "## Questionnaire" @@ -599,7 +547,6 @@ }, { "cell_type": "markdown", - "idx_": 104, "metadata": {}, "source": [ "1. Why do we say that fastai has a \"layered\" API? What does it mean?\n", @@ -621,7 +568,6 @@ }, { "cell_type": "markdown", - "idx_": 105, "metadata": {}, "source": [ "### Further Research" @@ -629,7 +575,6 @@ }, { "cell_type": "markdown", - "idx_": 106, "metadata": {}, "source": [ "1. Use the mid-level API to prepare the data in `DataLoaders` on your own datasets. Try this with the Pet dataset and the Adult dataset from Chapter 1.\n", @@ -638,7 +583,6 @@ }, { "cell_type": "markdown", - "idx_": 107, "metadata": {}, "source": [ "## Understanding fastai's Applications: Wrap Up" @@ -646,7 +590,6 @@ }, { "cell_type": "markdown", - "idx_": 108, "metadata": {}, "source": [ "Congratulations—you've completed all of the chapters in this book that cover the key practical parts of training models and using deep learning! You know how to use all of fastai's built-in applications, and how to customize them using the data block API and loss functions. You even know how to create a neural network from scratch, and train it! (And hopefully you now know some of the questions to ask to make sure your creations help improve society too.)\n", @@ -659,7 +602,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 109, "metadata": {}, "outputs": [], "source": [] @@ -676,6 +618,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2, - "path_": "11_midlevel_data.ipynb" + "nbformat_minor": 2 } diff --git a/clean/12_nlp_dive.ipynb b/clean/12_nlp_dive.ipynb index 31bd04f..07c835b 100644 --- a/clean/12_nlp_dive.ipynb +++ b/clean/12_nlp_dive.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -26,7 +24,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# A Language Model from Scratch" @@ -34,7 +31,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## The Data" @@ -43,7 +39,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -54,7 +49,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 10, "metadata": {}, "outputs": [], "source": [ @@ -65,7 +59,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -75,7 +68,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -88,7 +80,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -99,7 +90,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -110,7 +100,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 19, "metadata": {}, "outputs": [], "source": [ @@ -121,7 +110,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 21, "metadata": {}, "outputs": [], "source": [ @@ -132,7 +120,6 @@ }, { "cell_type": "markdown", - "idx_": 23, "metadata": {}, "source": [ "## Our First Language Model from Scratch" @@ -141,7 +128,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -151,7 +137,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -162,7 +147,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -173,7 +157,6 @@ }, { "cell_type": "markdown", - "idx_": 31, "metadata": {}, "source": [ "### Our Language Model in PyTorch" @@ -182,7 +165,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -204,7 +186,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -216,7 +197,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -230,7 +210,6 @@ }, { "cell_type": "markdown", - "idx_": 47, "metadata": {}, "source": [ "### Our First Recurrent Neural Network" @@ -239,7 +218,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -260,7 +238,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -271,7 +248,6 @@ }, { "cell_type": "markdown", - "idx_": 58, "metadata": {}, "source": [ "## Improving the RNN" @@ -279,7 +255,6 @@ }, { "cell_type": "markdown", - "idx_": 60, "metadata": {}, "source": [ "### Maintaining the State of an RNN" @@ -288,7 +263,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 62, "metadata": {}, "outputs": [], "source": [ @@ -313,7 +287,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 66, "metadata": {}, "outputs": [], "source": [ @@ -324,7 +297,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 68, "metadata": {}, "outputs": [], "source": [ @@ -338,7 +310,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 70, "metadata": {}, "outputs": [], "source": [ @@ -352,7 +323,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 72, "metadata": {}, "outputs": [], "source": [ @@ -363,7 +333,6 @@ }, { "cell_type": "markdown", - "idx_": 74, "metadata": {}, "source": [ "### Creating More Signal" @@ -372,7 +341,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 78, "metadata": {}, "outputs": [], "source": [ @@ -388,7 +356,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 80, "metadata": {}, "outputs": [], "source": [ @@ -398,7 +365,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 82, "metadata": {}, "outputs": [], "source": [ @@ -424,7 +390,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 84, "metadata": {}, "outputs": [], "source": [ @@ -435,7 +400,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 86, "metadata": {}, "outputs": [], "source": [ @@ -446,7 +410,6 @@ }, { "cell_type": "markdown", - "idx_": 88, "metadata": {}, "source": [ "## Multilayer RNNs" @@ -454,7 +417,6 @@ }, { "cell_type": "markdown", - "idx_": 94, "metadata": {}, "source": [ "### The Model" @@ -463,7 +425,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -485,7 +446,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 97, "metadata": {}, "outputs": [], "source": [ @@ -497,7 +457,6 @@ }, { "cell_type": "markdown", - "idx_": 99, "metadata": {}, "source": [ "### Exploding or Disappearing Activations" @@ -505,7 +464,6 @@ }, { "cell_type": "markdown", - "idx_": 103, "metadata": {}, "source": [ "## LSTM" @@ -513,7 +471,6 @@ }, { "cell_type": "markdown", - "idx_": 105, "metadata": {}, "source": [ "### Building an LSTM from Scratch" @@ -522,7 +479,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 108, "metadata": {}, "outputs": [], "source": [ @@ -549,7 +505,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 110, "metadata": {}, "outputs": [], "source": [ @@ -573,7 +528,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 112, "metadata": {}, "outputs": [], "source": [ @@ -583,7 +537,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 113, "metadata": {}, "outputs": [], "source": [ @@ -592,7 +545,6 @@ }, { "cell_type": "markdown", - "idx_": 115, "metadata": {}, "source": [ "### Training a Language Model Using LSTMs" @@ -601,7 +553,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 117, "metadata": {}, "outputs": [], "source": [ @@ -624,7 +575,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 118, "metadata": {}, "outputs": [], "source": [ @@ -636,7 +586,6 @@ }, { "cell_type": "markdown", - "idx_": 120, "metadata": {}, "source": [ "## Regularizing an LSTM" @@ -644,7 +593,6 @@ }, { "cell_type": "markdown", - "idx_": 122, "metadata": {}, "source": [ "### Dropout" @@ -653,7 +601,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 126, "metadata": {}, "outputs": [], "source": [ @@ -667,7 +614,6 @@ }, { "cell_type": "markdown", - "idx_": 129, "metadata": {}, "source": [ "### Activation Regularization and Temporal Activation Regularization" @@ -675,7 +621,6 @@ }, { "cell_type": "markdown", - "idx_": 132, "metadata": {}, "source": [ "### Training a Weight-Tied Regularized LSTM" @@ -684,7 +629,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 134, "metadata": {}, "outputs": [], "source": [ @@ -710,7 +654,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 136, "metadata": {}, "outputs": [], "source": [ @@ -722,7 +665,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 138, "metadata": {}, "outputs": [], "source": [ @@ -733,7 +675,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 140, "metadata": {}, "outputs": [], "source": [ @@ -742,7 +683,6 @@ }, { "cell_type": "markdown", - "idx_": 142, "metadata": {}, "source": [ "## Conclusion" @@ -750,7 +690,6 @@ }, { "cell_type": "markdown", - "idx_": 144, "metadata": {}, "source": [ "## Questionnaire" @@ -758,7 +697,6 @@ }, { "cell_type": "markdown", - "idx_": 145, "metadata": {}, "source": [ "1. If the dataset for your project is so big and complicated that working with it takes a significant amount of time, what should you do?\n", @@ -804,7 +742,6 @@ }, { "cell_type": "markdown", - "idx_": 146, "metadata": {}, "source": [ "### Further Research" @@ -812,7 +749,6 @@ }, { "cell_type": "markdown", - "idx_": 147, "metadata": {}, "source": [ "1. In ` LMModel2`, why can `forward` start with `h=0`? Why don't we need to say `h=torch.zeros(...)`?\n", @@ -824,7 +760,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 148, "metadata": {}, "outputs": [], "source": [] @@ -841,6 +776,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2, - "path_": "12_nlp_dive.ipynb" + "nbformat_minor": 2 } diff --git a/clean/13_convolutions.ipynb b/clean/13_convolutions.ipynb index 9447abb..4ea9504 100644 --- a/clean/13_convolutions.ipynb +++ b/clean/13_convolutions.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -29,7 +27,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# Convolutional Neural Networks" @@ -37,7 +34,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## The Magic of Convolutions" @@ -46,7 +42,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -58,7 +53,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -68,7 +62,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 14, "metadata": {}, "outputs": [], "source": [ @@ -79,7 +72,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -90,7 +82,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -101,7 +92,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -111,7 +101,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 20, "metadata": {}, "outputs": [], "source": [ @@ -122,7 +111,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 23, "metadata": {}, "outputs": [], "source": [ @@ -132,7 +120,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -142,7 +129,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -153,7 +139,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 28, "metadata": {}, "outputs": [], "source": [ @@ -162,7 +147,6 @@ }, { "cell_type": "markdown", - "idx_": 30, "metadata": {}, "source": [ "### Mapping a Convolution Kernel" @@ -171,7 +155,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 34, "metadata": {}, "outputs": [], "source": [ @@ -181,7 +164,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 37, "metadata": {}, "outputs": [], "source": [ @@ -194,7 +176,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -209,7 +190,6 @@ }, { "cell_type": "markdown", - "idx_": 44, "metadata": {}, "source": [ "### Convolutions in PyTorch" @@ -218,7 +198,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 46, "metadata": {}, "outputs": [], "source": [ @@ -236,7 +215,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 48, "metadata": {}, "outputs": [], "source": [ @@ -253,7 +231,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 50, "metadata": {}, "outputs": [], "source": [ @@ -263,7 +240,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 52, "metadata": {}, "outputs": [], "source": [ @@ -273,7 +249,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 54, "metadata": {}, "outputs": [], "source": [ @@ -283,7 +258,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 55, "metadata": {}, "outputs": [], "source": [ @@ -294,7 +268,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 57, "metadata": {}, "outputs": [], "source": [ @@ -303,7 +276,6 @@ }, { "cell_type": "markdown", - "idx_": 60, "metadata": {}, "source": [ "### Strides and Padding" @@ -311,7 +283,6 @@ }, { "cell_type": "markdown", - "idx_": 69, "metadata": {}, "source": [ "### Understanding the Convolution Equations" @@ -319,7 +290,6 @@ }, { "cell_type": "markdown", - "idx_": 84, "metadata": {}, "source": [ "## Our First Convolutional Neural Network" @@ -327,7 +297,6 @@ }, { "cell_type": "markdown", - "idx_": 86, "metadata": {}, "source": [ "### Creating the CNN" @@ -336,7 +305,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 88, "metadata": {}, "outputs": [], "source": [ @@ -350,7 +318,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 90, "metadata": {}, "outputs": [], "source": [ @@ -360,7 +327,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 92, "metadata": {}, "outputs": [], "source": [ @@ -374,7 +340,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -384,7 +349,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -397,7 +361,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 101, "metadata": {}, "outputs": [], "source": [ @@ -414,7 +377,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 104, "metadata": {}, "outputs": [], "source": [ @@ -424,7 +386,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 106, "metadata": {}, "outputs": [], "source": [ @@ -434,7 +395,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 108, "metadata": {}, "outputs": [], "source": [ @@ -444,7 +404,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 110, "metadata": {}, "outputs": [], "source": [ @@ -453,7 +412,6 @@ }, { "cell_type": "markdown", - "idx_": 112, "metadata": {}, "source": [ "### Understanding Convolution Arithmetic" @@ -462,7 +420,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 114, "metadata": {}, "outputs": [], "source": [ @@ -473,7 +430,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 116, "metadata": {}, "outputs": [], "source": [ @@ -483,7 +439,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 118, "metadata": {}, "outputs": [], "source": [ @@ -492,7 +447,6 @@ }, { "cell_type": "markdown", - "idx_": 121, "metadata": {}, "source": [ "### Receptive Fields" @@ -500,7 +454,6 @@ }, { "cell_type": "markdown", - "idx_": 128, "metadata": {}, "source": [ "### A Note About Twitter" @@ -508,7 +461,6 @@ }, { "cell_type": "markdown", - "idx_": 139, "metadata": {}, "source": [ "## Color Images" @@ -517,7 +469,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 141, "metadata": {}, "outputs": [], "source": [ @@ -528,7 +479,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 142, "metadata": {}, "outputs": [], "source": [ @@ -538,7 +488,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 144, "metadata": {}, "outputs": [], "source": [ @@ -549,7 +498,6 @@ }, { "cell_type": "markdown", - "idx_": 152, "metadata": {}, "source": [ "## Improving Training Stability" @@ -558,7 +506,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 154, "metadata": {}, "outputs": [], "source": [ @@ -568,7 +515,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 155, "metadata": {}, "outputs": [], "source": [ @@ -579,7 +525,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 156, "metadata": {}, "outputs": [], "source": [ @@ -589,7 +534,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 158, "metadata": {}, "outputs": [], "source": [ @@ -608,7 +552,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 160, "metadata": {}, "outputs": [], "source": [ @@ -617,7 +560,6 @@ }, { "cell_type": "markdown", - "idx_": 162, "metadata": {}, "source": [ "### A Simple Baseline" @@ -626,7 +568,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 164, "metadata": {}, "outputs": [], "source": [ @@ -639,7 +580,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 166, "metadata": {}, "outputs": [], "source": [ @@ -657,7 +597,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 168, "metadata": {}, "outputs": [], "source": [ @@ -667,7 +606,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 170, "metadata": {}, "outputs": [], "source": [ @@ -681,7 +619,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 171, "metadata": {}, "outputs": [], "source": [ @@ -691,7 +628,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 173, "metadata": {}, "outputs": [], "source": [ @@ -701,7 +637,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 175, "metadata": {}, "outputs": [], "source": [ @@ -710,7 +645,6 @@ }, { "cell_type": "markdown", - "idx_": 177, "metadata": {}, "source": [ "### Increase Batch Size" @@ -719,7 +653,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 179, "metadata": {}, "outputs": [], "source": [ @@ -729,7 +662,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 180, "metadata": {}, "outputs": [], "source": [ @@ -739,7 +671,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 182, "metadata": {}, "outputs": [], "source": [ @@ -748,7 +679,6 @@ }, { "cell_type": "markdown", - "idx_": 184, "metadata": {}, "source": [ "### 1cycle Training" @@ -757,7 +687,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 186, "metadata": {}, "outputs": [], "source": [ @@ -771,7 +700,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 187, "metadata": {}, "outputs": [], "source": [ @@ -781,7 +709,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 189, "metadata": {}, "outputs": [], "source": [ @@ -791,7 +718,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 191, "metadata": {}, "outputs": [], "source": [ @@ -801,7 +727,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 193, "metadata": {}, "outputs": [], "source": [ @@ -811,7 +736,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 200, "metadata": {}, "outputs": [], "source": [ @@ -820,7 +744,6 @@ }, { "cell_type": "markdown", - "idx_": 202, "metadata": {}, "source": [ "### Batch Normalization" @@ -829,7 +752,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 206, "metadata": {}, "outputs": [], "source": [ @@ -843,7 +765,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 208, "metadata": {}, "outputs": [], "source": [ @@ -853,7 +774,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 210, "metadata": {}, "outputs": [], "source": [ @@ -863,7 +783,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 212, "metadata": {}, "outputs": [], "source": [ @@ -872,7 +791,6 @@ }, { "cell_type": "markdown", - "idx_": 214, "metadata": {}, "source": [ "## Conclusions" @@ -880,7 +798,6 @@ }, { "cell_type": "markdown", - "idx_": 216, "metadata": {}, "source": [ "## Questionnaire" @@ -888,7 +805,6 @@ }, { "cell_type": "markdown", - "idx_": 217, "metadata": {}, "source": [ "1. What is a \"feature\"?\n", @@ -935,7 +851,6 @@ }, { "cell_type": "markdown", - "idx_": 218, "metadata": {}, "source": [ "### Further Research" @@ -943,7 +858,6 @@ }, { "cell_type": "markdown", - "idx_": 219, "metadata": {}, "source": [ "1. What features other than edge detectors have been used in computer vision (especially before deep learning became popular)?\n", @@ -954,7 +868,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 220, "metadata": {}, "outputs": [], "source": [] @@ -971,6 +884,5 @@ } }, "nbformat": 4, - "nbformat_minor": 4, - "path_": "13_convolutions.ipynb" + "nbformat_minor": 4 } diff --git a/clean/14_resnet.ipynb b/clean/14_resnet.ipynb index ca6b9b3..a0417fd 100644 --- a/clean/14_resnet.ipynb +++ b/clean/14_resnet.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -26,7 +24,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# ResNets" @@ -34,7 +31,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## Going Back to Imagenette" @@ -43,7 +39,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -61,7 +56,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 8, "metadata": {}, "outputs": [], "source": [ @@ -71,7 +65,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -81,7 +74,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -91,7 +83,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -111,7 +102,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -125,7 +115,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -135,7 +124,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 20, "metadata": {}, "outputs": [], "source": [ @@ -144,7 +132,6 @@ }, { "cell_type": "markdown", - "idx_": 22, "metadata": {}, "source": [ "## Building a Modern CNN: ResNet" @@ -152,7 +139,6 @@ }, { "cell_type": "markdown", - "idx_": 24, "metadata": {}, "source": [ "### Skip Connections" @@ -161,7 +147,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -177,7 +162,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 35, "metadata": {}, "outputs": [], "source": [ @@ -190,7 +174,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -207,7 +190,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -218,7 +200,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -228,7 +209,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -239,7 +219,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -249,7 +228,6 @@ }, { "cell_type": "markdown", - "idx_": 46, "metadata": {}, "source": [ "### A State-of-the-Art ResNet" @@ -258,7 +236,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 50, "metadata": {}, "outputs": [], "source": [ @@ -272,7 +249,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -282,7 +258,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 55, "metadata": {}, "outputs": [], "source": [ @@ -308,7 +283,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 57, "metadata": {}, "outputs": [], "source": [ @@ -318,7 +292,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 59, "metadata": {}, "outputs": [], "source": [ @@ -328,7 +301,6 @@ }, { "cell_type": "markdown", - "idx_": 61, "metadata": {}, "source": [ "### Bottleneck Layers" @@ -337,7 +309,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -351,7 +322,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -361,7 +331,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -371,7 +340,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 70, "metadata": {}, "outputs": [], "source": [ @@ -381,7 +349,6 @@ }, { "cell_type": "markdown", - "idx_": 72, "metadata": {}, "source": [ "## Conclusion" @@ -389,7 +356,6 @@ }, { "cell_type": "markdown", - "idx_": 74, "metadata": {}, "source": [ "## Questionnaire" @@ -397,7 +363,6 @@ }, { "cell_type": "markdown", - "idx_": 75, "metadata": {}, "source": [ "1. How did we get to a single vector of activations in the CNNs used for MNIST in previous chapters? Why isn't that suitable for Imagenette?\n", @@ -426,7 +391,6 @@ }, { "cell_type": "markdown", - "idx_": 76, "metadata": {}, "source": [ "### Further Research" @@ -434,7 +398,6 @@ }, { "cell_type": "markdown", - "idx_": 77, "metadata": {}, "source": [ "1. Try creating a fully convolutional net with adaptive average pooling for MNIST (note that you'll need fewer stride-2 layers). How does it compare to a network without such a pooling layer?\n", @@ -446,7 +409,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 78, "metadata": {}, "outputs": [], "source": [] @@ -463,6 +425,5 @@ } }, "nbformat": 4, - "nbformat_minor": 4, - "path_": "14_resnet.ipynb" + "nbformat_minor": 4 } diff --git a/clean/15_arch_details.ipynb b/clean/15_arch_details.ipynb index 678c23b..4a9af48 100644 --- a/clean/15_arch_details.ipynb +++ b/clean/15_arch_details.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -26,7 +24,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# Application Architectures Deep Dive" @@ -34,7 +31,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## Computer Vision" @@ -42,7 +38,6 @@ }, { "cell_type": "markdown", - "idx_": 7, "metadata": {}, "source": [ "### vision_learner" @@ -51,7 +46,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -61,7 +55,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 12, "metadata": {}, "outputs": [], "source": [ @@ -70,7 +63,6 @@ }, { "cell_type": "markdown", - "idx_": 17, "metadata": {}, "source": [ "### unet_learner" @@ -78,7 +70,6 @@ }, { "cell_type": "markdown", - "idx_": 23, "metadata": {}, "source": [ "### A Siamese Network" @@ -87,7 +78,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 24, "metadata": {}, "outputs": [], "source": [ @@ -139,7 +129,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 26, "metadata": {}, "outputs": [], "source": [ @@ -155,7 +144,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 28, "metadata": {}, "outputs": [], "source": [ @@ -165,7 +153,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 30, "metadata": {}, "outputs": [], "source": [ @@ -175,7 +162,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 32, "metadata": {}, "outputs": [], "source": [ @@ -185,7 +171,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 34, "metadata": {}, "outputs": [], "source": [ @@ -196,7 +181,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -207,7 +191,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -219,7 +202,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -229,7 +211,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -239,7 +220,6 @@ }, { "cell_type": "markdown", - "idx_": 45, "metadata": {}, "source": [ "## Natural Language Processing" @@ -247,7 +227,6 @@ }, { "cell_type": "markdown", - "idx_": 49, "metadata": {}, "source": [ "## Tabular" @@ -255,7 +234,6 @@ }, { "cell_type": "markdown", - "idx_": 52, "metadata": {}, "source": [ "## Wrapping Up Architectures" @@ -263,7 +241,6 @@ }, { "cell_type": "markdown", - "idx_": 56, "metadata": {}, "source": [ "## Questionnaire" @@ -271,7 +248,6 @@ }, { "cell_type": "markdown", - "idx_": 57, "metadata": {}, "source": [ "1. What is the \"head\" of a neural net?\n", @@ -296,7 +272,6 @@ }, { "cell_type": "markdown", - "idx_": 58, "metadata": {}, "source": [ "### Further Research" @@ -304,7 +279,6 @@ }, { "cell_type": "markdown", - "idx_": 59, "metadata": {}, "source": [ "1. Write your own custom head and try training the pet recognizer with it. See if you can get a better result than fastai's default.\n", @@ -317,7 +291,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 60, "metadata": {}, "outputs": [], "source": [] @@ -334,6 +307,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2, - "path_": "15_arch_details.ipynb" + "nbformat_minor": 2 } diff --git a/clean/16_accel_sgd.ipynb b/clean/16_accel_sgd.ipynb index 7820541..4756fe5 100644 --- a/clean/16_accel_sgd.ipynb +++ b/clean/16_accel_sgd.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -26,7 +24,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# The Training Process" @@ -34,7 +31,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## Establishing a Baseline" @@ -43,7 +39,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -61,7 +56,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 8, "metadata": {}, "outputs": [], "source": [ @@ -71,7 +65,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 10, "metadata": {}, "outputs": [], "source": [ @@ -83,7 +76,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 12, "metadata": {}, "outputs": [], "source": [ @@ -94,7 +86,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 14, "metadata": {}, "outputs": [], "source": [ @@ -104,7 +95,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 16, "metadata": {}, "outputs": [], "source": [ @@ -114,7 +104,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -123,7 +112,6 @@ }, { "cell_type": "markdown", - "idx_": 20, "metadata": {}, "source": [ "## A Generic Optimizer" @@ -132,7 +120,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 23, "metadata": {}, "outputs": [], "source": [ @@ -142,7 +129,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -152,7 +138,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -162,7 +147,6 @@ }, { "cell_type": "markdown", - "idx_": 29, "metadata": {}, "source": [ "## Momentum" @@ -171,7 +155,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -191,7 +174,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -215,7 +197,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -227,7 +208,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -237,7 +217,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -247,7 +226,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -258,7 +236,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -267,7 +244,6 @@ }, { "cell_type": "markdown", - "idx_": 44, "metadata": {}, "source": [ "## RMSProp" @@ -276,7 +252,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 47, "metadata": {}, "outputs": [], "source": [ @@ -288,7 +263,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -303,7 +277,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -313,7 +286,6 @@ }, { "cell_type": "markdown", - "idx_": 53, "metadata": {}, "source": [ "## Adam" @@ -321,7 +293,6 @@ }, { "cell_type": "markdown", - "idx_": 55, "metadata": {}, "source": [ "## Decoupled Weight Decay" @@ -329,7 +300,6 @@ }, { "cell_type": "markdown", - "idx_": 57, "metadata": {}, "source": [ "## Callbacks" @@ -337,7 +307,6 @@ }, { "cell_type": "markdown", - "idx_": 66, "metadata": {}, "source": [ "### Creating a Callback" @@ -346,7 +315,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -358,7 +326,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -382,7 +349,6 @@ }, { "cell_type": "markdown", - "idx_": 76, "metadata": {}, "source": [ "### Callback Ordering and Exceptions" @@ -391,7 +357,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 78, "metadata": {}, "outputs": [], "source": [ @@ -404,7 +369,6 @@ }, { "cell_type": "markdown", - "idx_": 82, "metadata": {}, "source": [ "## Conclusion" @@ -412,7 +376,6 @@ }, { "cell_type": "markdown", - "idx_": 84, "metadata": {}, "source": [ "## Questionnaire" @@ -420,7 +383,6 @@ }, { "cell_type": "markdown", - "idx_": 85, "metadata": {}, "source": [ "1. What is the equation for a step of SGD, in math or code (as you prefer)?\n", @@ -454,7 +416,6 @@ }, { "cell_type": "markdown", - "idx_": 86, "metadata": {}, "source": [ "### Further Research" @@ -462,7 +423,6 @@ }, { "cell_type": "markdown", - "idx_": 87, "metadata": {}, "source": [ "1. Look up the \"Rectified Adam\" paper, implement it using the general optimizer framework, and try it out. Search for other recent optimizers that work well in practice, and pick one to implement.\n", @@ -473,7 +433,6 @@ }, { "cell_type": "markdown", - "idx_": 88, "metadata": {}, "source": [ "## Foundations of Deep Learning: Wrap up" @@ -481,7 +440,6 @@ }, { "cell_type": "markdown", - "idx_": 89, "metadata": {}, "source": [ "Congratulations, you have made it to the end of the \"foundations of deep learning\" section of the book! You now understand how all of fastai's applications and most important architectures are built, and the recommended ways to train them—and you have all the information you need to build these from scratch. While you probably won't need to create your own training loop, or batchnorm layer, for instance, knowing what is going on behind the scenes is very helpful for debugging, profiling, and deploying your solutions.\n", @@ -494,7 +452,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 90, "metadata": {}, "outputs": [], "source": [] @@ -511,6 +468,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2, - "path_": "16_accel_sgd.ipynb" + "nbformat_minor": 2 } diff --git a/clean/17_foundations.ipynb b/clean/17_foundations.ipynb index c12fb5d..6c576d7 100644 --- a/clean/17_foundations.ipynb +++ b/clean/17_foundations.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,7 +14,6 @@ }, { "cell_type": "markdown", - "idx_": 2, "metadata": {}, "source": [ "# A Neural Net from the Foundations" @@ -23,7 +21,6 @@ }, { "cell_type": "markdown", - "idx_": 4, "metadata": {}, "source": [ "## Building a Neural Net Layer from Scratch" @@ -31,7 +28,6 @@ }, { "cell_type": "markdown", - "idx_": 6, "metadata": {}, "source": [ "### Modeling a Neuron" @@ -39,7 +35,6 @@ }, { "cell_type": "markdown", - "idx_": 9, "metadata": {}, "source": [ "### Matrix Multiplication from Scratch" @@ -48,7 +43,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -59,7 +53,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -77,7 +70,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -88,7 +80,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -98,7 +89,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 19, "metadata": {}, "outputs": [], "source": [ @@ -107,7 +97,6 @@ }, { "cell_type": "markdown", - "idx_": 21, "metadata": {}, "source": [ "### Elementwise Arithmetic" @@ -116,7 +105,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 23, "metadata": {}, "outputs": [], "source": [ @@ -128,7 +116,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -138,7 +125,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -148,7 +134,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -158,7 +143,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -169,7 +153,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -180,7 +163,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 35, "metadata": {}, "outputs": [], "source": [ @@ -197,7 +179,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 36, "metadata": {}, "outputs": [], "source": [ @@ -206,7 +187,6 @@ }, { "cell_type": "markdown", - "idx_": 38, "metadata": {}, "source": [ "### Broadcasting" @@ -214,7 +194,6 @@ }, { "cell_type": "markdown", - "idx_": 40, "metadata": {}, "source": [ "#### Broadcasting with a scalar" @@ -223,7 +202,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -234,7 +212,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 44, "metadata": {}, "outputs": [], "source": [ @@ -244,7 +221,6 @@ }, { "cell_type": "markdown", - "idx_": 46, "metadata": {}, "source": [ "#### Broadcasting a vector to a matrix" @@ -253,7 +229,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 48, "metadata": {}, "outputs": [], "source": [ @@ -265,7 +240,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -275,7 +249,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -285,7 +258,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 53, "metadata": {}, "outputs": [], "source": [ @@ -296,7 +268,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 55, "metadata": {}, "outputs": [], "source": [ @@ -306,7 +277,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 57, "metadata": {}, "outputs": [], "source": [ @@ -316,7 +286,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 59, "metadata": {}, "outputs": [], "source": [ @@ -328,7 +297,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 61, "metadata": {}, "outputs": [], "source": [ @@ -340,7 +308,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 63, "metadata": {}, "outputs": [], "source": [ @@ -353,7 +320,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -363,7 +329,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -374,7 +339,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 69, "metadata": {}, "outputs": [], "source": [ @@ -384,7 +348,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -395,7 +358,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 73, "metadata": {}, "outputs": [], "source": [ @@ -405,7 +367,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -415,7 +376,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 77, "metadata": {}, "outputs": [], "source": [ @@ -433,7 +393,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 78, "metadata": {}, "outputs": [], "source": [ @@ -442,7 +401,6 @@ }, { "cell_type": "markdown", - "idx_": 80, "metadata": {}, "source": [ "#### Broadcasting rules" @@ -450,7 +408,6 @@ }, { "cell_type": "markdown", - "idx_": 83, "metadata": {}, "source": [ "### Einstein Summation" @@ -459,7 +416,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 85, "metadata": {}, "outputs": [], "source": [ @@ -469,7 +425,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 87, "metadata": {}, "outputs": [], "source": [ @@ -478,7 +433,6 @@ }, { "cell_type": "markdown", - "idx_": 90, "metadata": {}, "source": [ "## The Forward and Backward Passes" @@ -486,7 +440,6 @@ }, { "cell_type": "markdown", - "idx_": 92, "metadata": {}, "source": [ "### Defining and Initializing a Layer" @@ -495,7 +448,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 94, "metadata": {}, "outputs": [], "source": [ @@ -505,7 +457,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 96, "metadata": {}, "outputs": [], "source": [ @@ -516,7 +467,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 98, "metadata": {}, "outputs": [], "source": [ @@ -529,7 +479,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 100, "metadata": {}, "outputs": [], "source": [ @@ -540,7 +489,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 102, "metadata": {}, "outputs": [], "source": [ @@ -550,7 +498,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 104, "metadata": {}, "outputs": [], "source": [ @@ -562,7 +509,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 106, "metadata": {}, "outputs": [], "source": [ @@ -574,7 +520,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 108, "metadata": {}, "outputs": [], "source": [ @@ -586,7 +531,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 110, "metadata": {}, "outputs": [], "source": [ @@ -596,7 +540,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 112, "metadata": {}, "outputs": [], "source": [ @@ -607,7 +550,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 114, "metadata": {}, "outputs": [], "source": [ @@ -621,7 +563,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 116, "metadata": {}, "outputs": [], "source": [ @@ -632,7 +573,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 118, "metadata": {}, "outputs": [], "source": [ @@ -642,7 +582,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 120, "metadata": {}, "outputs": [], "source": [ @@ -653,7 +592,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 122, "metadata": {}, "outputs": [], "source": [ @@ -665,7 +603,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 124, "metadata": {}, "outputs": [], "source": [ @@ -677,7 +614,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 126, "metadata": {}, "outputs": [], "source": [ @@ -688,7 +624,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 127, "metadata": {}, "outputs": [], "source": [ @@ -701,7 +636,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 129, "metadata": {}, "outputs": [], "source": [ @@ -713,7 +647,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 131, "metadata": {}, "outputs": [], "source": [ @@ -727,7 +660,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 133, "metadata": {}, "outputs": [], "source": [ @@ -738,7 +670,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 135, "metadata": {}, "outputs": [], "source": [ @@ -748,7 +679,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 137, "metadata": {}, "outputs": [], "source": [ @@ -757,7 +687,6 @@ }, { "cell_type": "markdown", - "idx_": 139, "metadata": {}, "source": [ "### Gradients and the Backward Pass" @@ -766,7 +695,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 143, "metadata": {}, "outputs": [], "source": [ @@ -778,7 +706,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 145, "metadata": {}, "outputs": [], "source": [ @@ -790,7 +717,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 147, "metadata": {}, "outputs": [], "source": [ @@ -803,7 +729,6 @@ }, { "cell_type": "markdown", - "idx_": 149, "metadata": {}, "source": [ "### Sidebar: SymPy" @@ -812,7 +737,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 153, "metadata": {}, "outputs": [], "source": [ @@ -823,7 +747,6 @@ }, { "cell_type": "markdown", - "idx_": 155, "metadata": {}, "source": [ "### End sidebar" @@ -832,7 +755,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 157, "metadata": {}, "outputs": [], "source": [ @@ -853,7 +775,6 @@ }, { "cell_type": "markdown", - "idx_": 160, "metadata": {}, "source": [ "### Refactoring the Model" @@ -862,7 +783,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 162, "metadata": {}, "outputs": [], "source": [ @@ -878,7 +798,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 164, "metadata": {}, "outputs": [], "source": [ @@ -899,7 +818,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 165, "metadata": {}, "outputs": [], "source": [ @@ -918,7 +836,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 167, "metadata": {}, "outputs": [], "source": [ @@ -939,7 +856,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 169, "metadata": {}, "outputs": [], "source": [ @@ -949,7 +865,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 171, "metadata": {}, "outputs": [], "source": [ @@ -959,7 +874,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 173, "metadata": {}, "outputs": [], "source": [ @@ -968,7 +882,6 @@ }, { "cell_type": "markdown", - "idx_": 174, "metadata": {}, "source": [ "### Going to PyTorch" @@ -977,7 +890,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 176, "metadata": {}, "outputs": [], "source": [ @@ -995,7 +907,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 178, "metadata": {}, "outputs": [], "source": [ @@ -1007,7 +918,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 179, "metadata": {}, "outputs": [], "source": [ @@ -1025,7 +935,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 180, "metadata": {}, "outputs": [], "source": [ @@ -1038,7 +947,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 182, "metadata": {}, "outputs": [], "source": [ @@ -1060,7 +968,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 184, "metadata": {}, "outputs": [], "source": [ @@ -1078,7 +985,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 186, "metadata": {}, "outputs": [], "source": [ @@ -1090,7 +996,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 188, "metadata": {}, "outputs": [], "source": [ @@ -1107,7 +1012,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 190, "metadata": {}, "outputs": [], "source": [ @@ -1122,7 +1026,6 @@ }, { "cell_type": "markdown", - "idx_": 192, "metadata": {}, "source": [ "## Conclusion" @@ -1130,7 +1033,6 @@ }, { "cell_type": "markdown", - "idx_": 194, "metadata": {}, "source": [ "## Questionnaire" @@ -1138,7 +1040,6 @@ }, { "cell_type": "markdown", - "idx_": 195, "metadata": {}, "source": [ "1. Write the Python code to implement a single neuron.\n", @@ -1185,7 +1086,6 @@ }, { "cell_type": "markdown", - "idx_": 196, "metadata": {}, "source": [ "### Further Research" @@ -1193,7 +1093,6 @@ }, { "cell_type": "markdown", - "idx_": 197, "metadata": {}, "source": [ "1. Implement ReLU as a `torch.autograd.Function` and train a model with it.\n", @@ -1205,7 +1104,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 198, "metadata": {}, "outputs": [], "source": [] @@ -1222,6 +1120,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2, - "path_": "17_foundations.ipynb" + "nbformat_minor": 2 } diff --git a/clean/18_CAM.ipynb b/clean/18_CAM.ipynb index b56ada1..8c08300 100644 --- a/clean/18_CAM.ipynb +++ b/clean/18_CAM.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -26,7 +24,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# CNN Interpretation with CAM" @@ -34,7 +31,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## CAM and Hooks" @@ -43,7 +39,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -59,7 +54,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -70,7 +64,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -81,7 +74,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -92,7 +84,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 15, "metadata": {}, "outputs": [], "source": [ @@ -102,7 +93,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 17, "metadata": {}, "outputs": [], "source": [ @@ -112,7 +102,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 19, "metadata": {}, "outputs": [], "source": [ @@ -122,7 +111,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 21, "metadata": {}, "outputs": [], "source": [ @@ -132,7 +120,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 24, "metadata": {}, "outputs": [], "source": [ @@ -142,7 +129,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 25, "metadata": {}, "outputs": [], "source": [ @@ -153,7 +139,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -167,7 +152,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -177,7 +161,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -192,7 +175,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -203,7 +185,6 @@ }, { "cell_type": "markdown", - "idx_": 36, "metadata": {}, "source": [ "## Gradient CAM" @@ -212,7 +193,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 38, "metadata": {}, "outputs": [], "source": [ @@ -227,7 +207,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 40, "metadata": {}, "outputs": [], "source": [ @@ -243,7 +222,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -254,7 +232,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 43, "metadata": {}, "outputs": [], "source": [ @@ -267,7 +244,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 45, "metadata": {}, "outputs": [], "source": [ @@ -282,7 +258,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 46, "metadata": {}, "outputs": [], "source": [ @@ -293,7 +268,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 48, "metadata": {}, "outputs": [], "source": [ @@ -305,7 +279,6 @@ }, { "cell_type": "markdown", - "idx_": 49, "metadata": {}, "source": [ "## Conclusion" @@ -313,7 +286,6 @@ }, { "cell_type": "markdown", - "idx_": 51, "metadata": {}, "source": [ "## Questionnaire" @@ -321,7 +293,6 @@ }, { "cell_type": "markdown", - "idx_": 52, "metadata": {}, "source": [ "1. What is a \"hook\" in PyTorch?\n", @@ -341,7 +312,6 @@ }, { "cell_type": "markdown", - "idx_": 53, "metadata": {}, "source": [ "### Further Research" @@ -349,7 +319,6 @@ }, { "cell_type": "markdown", - "idx_": 54, "metadata": {}, "source": [ "1. Try removing `keepdim` and see what happens. Look up this parameter in the PyTorch docs. Why do we need it in this notebook?\n", @@ -359,7 +328,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 55, "metadata": {}, "outputs": [], "source": [] @@ -376,6 +344,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2, - "path_": "18_CAM.ipynb" + "nbformat_minor": 2 } diff --git a/clean/19_learner.ipynb b/clean/19_learner.ipynb index 5195fa3..d00f467 100644 --- a/clean/19_learner.ipynb +++ b/clean/19_learner.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -26,7 +24,6 @@ }, { "cell_type": "markdown", - "idx_": 2, "metadata": {}, "source": [ "# A fastai Learner from Scratch" @@ -34,7 +31,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## Data" @@ -43,7 +39,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -53,7 +48,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 9, "metadata": {}, "outputs": [], "source": [ @@ -64,7 +58,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 11, "metadata": {}, "outputs": [], "source": [ @@ -76,7 +69,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -87,7 +79,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 14, "metadata": {}, "outputs": [], "source": [ @@ -98,7 +89,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 16, "metadata": {}, "outputs": [], "source": [ @@ -108,7 +98,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 18, "metadata": {}, "outputs": [], "source": [ @@ -117,7 +106,6 @@ }, { "cell_type": "markdown", - "idx_": 20, "metadata": {}, "source": [ "### Dataset" @@ -126,7 +114,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 22, "metadata": {}, "outputs": [], "source": [ @@ -142,7 +129,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 24, "metadata": {}, "outputs": [], "source": [ @@ -154,7 +140,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 26, "metadata": {}, "outputs": [], "source": [ @@ -166,7 +151,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 27, "metadata": {}, "outputs": [], "source": [ @@ -176,7 +160,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -188,7 +171,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -199,7 +181,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -220,7 +201,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 35, "metadata": {}, "outputs": [], "source": [ @@ -234,7 +214,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 37, "metadata": {}, "outputs": [], "source": [ @@ -245,7 +224,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 39, "metadata": {}, "outputs": [], "source": [ @@ -260,7 +238,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 41, "metadata": {}, "outputs": [], "source": [ @@ -271,7 +248,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 42, "metadata": {}, "outputs": [], "source": [ @@ -281,7 +257,6 @@ }, { "cell_type": "markdown", - "idx_": 45, "metadata": {}, "source": [ "## Module and Parameter" @@ -290,7 +265,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 47, "metadata": {}, "outputs": [], "source": [ @@ -302,7 +276,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 49, "metadata": {}, "outputs": [], "source": [ @@ -312,7 +285,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 51, "metadata": {}, "outputs": [], "source": [ @@ -350,7 +322,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 53, "metadata": {}, "outputs": [], "source": [ @@ -372,7 +343,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 55, "metadata": {}, "outputs": [], "source": [ @@ -383,7 +353,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 57, "metadata": {}, "outputs": [], "source": [ @@ -395,7 +364,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 59, "metadata": {}, "outputs": [], "source": [ @@ -412,7 +380,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 61, "metadata": {}, "outputs": [], "source": [ @@ -424,7 +391,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 63, "metadata": {}, "outputs": [], "source": [ @@ -437,7 +403,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 65, "metadata": {}, "outputs": [], "source": [ @@ -448,7 +413,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 67, "metadata": {}, "outputs": [], "source": [ @@ -458,7 +422,6 @@ }, { "cell_type": "markdown", - "idx_": 69, "metadata": {}, "source": [ "### Simple CNN" @@ -467,7 +430,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 71, "metadata": {}, "outputs": [], "source": [ @@ -485,7 +447,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 75, "metadata": {}, "outputs": [], "source": [ @@ -496,7 +457,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 77, "metadata": {}, "outputs": [], "source": [ @@ -514,7 +474,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 79, "metadata": {}, "outputs": [], "source": [ @@ -525,7 +484,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 81, "metadata": {}, "outputs": [], "source": [ @@ -538,7 +496,6 @@ }, { "cell_type": "markdown", - "idx_": 83, "metadata": {}, "source": [ "## Loss" @@ -547,7 +504,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 85, "metadata": {}, "outputs": [], "source": [ @@ -557,7 +513,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 87, "metadata": {}, "outputs": [], "source": [ @@ -569,7 +524,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 89, "metadata": {}, "outputs": [], "source": [ @@ -580,7 +534,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 91, "metadata": {}, "outputs": [], "source": [ @@ -591,7 +544,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 93, "metadata": {}, "outputs": [], "source": [ @@ -603,7 +555,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 95, "metadata": {}, "outputs": [], "source": [ @@ -617,7 +568,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 97, "metadata": {}, "outputs": [], "source": [ @@ -627,7 +577,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 99, "metadata": {}, "outputs": [], "source": [ @@ -637,7 +586,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 101, "metadata": {}, "outputs": [], "source": [ @@ -646,7 +594,6 @@ }, { "cell_type": "markdown", - "idx_": 103, "metadata": {}, "source": [ "## Learner" @@ -655,7 +602,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 105, "metadata": {}, "outputs": [], "source": [ @@ -670,7 +616,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 107, "metadata": {}, "outputs": [], "source": [ @@ -683,7 +628,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 109, "metadata": {}, "outputs": [], "source": [ @@ -727,7 +671,6 @@ }, { "cell_type": "markdown", - "idx_": 111, "metadata": {}, "source": [ "### Callbacks" @@ -736,7 +679,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 113, "metadata": {}, "outputs": [], "source": [ @@ -746,7 +688,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 116, "metadata": {}, "outputs": [], "source": [ @@ -761,7 +702,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 118, "metadata": {}, "outputs": [], "source": [ @@ -785,7 +725,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 120, "metadata": {}, "outputs": [], "source": [ @@ -796,7 +735,6 @@ }, { "cell_type": "markdown", - "idx_": 122, "metadata": {}, "source": [ "### Scheduling the Learning Rate" @@ -805,7 +743,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 124, "metadata": {}, "outputs": [], "source": [ @@ -828,7 +765,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 126, "metadata": {}, "outputs": [], "source": [ @@ -840,7 +776,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 128, "metadata": {}, "outputs": [], "source": [ @@ -851,7 +786,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 130, "metadata": {}, "outputs": [], "source": [ @@ -879,7 +813,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 132, "metadata": {}, "outputs": [], "source": [ @@ -890,7 +823,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 134, "metadata": {}, "outputs": [], "source": [ @@ -900,7 +832,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 136, "metadata": {}, "outputs": [], "source": [ @@ -909,7 +840,6 @@ }, { "cell_type": "markdown", - "idx_": 137, "metadata": {}, "source": [ "## Conclusion" @@ -917,7 +847,6 @@ }, { "cell_type": "markdown", - "idx_": 139, "metadata": {}, "source": [ "## Questionnaire" @@ -925,7 +854,6 @@ }, { "cell_type": "markdown", - "idx_": 140, "metadata": {}, "source": [ "> tip: Experiments: For the questions here that ask you to explain what some function or class is, you should also complete your own code experiments." @@ -933,7 +861,6 @@ }, { "cell_type": "markdown", - "idx_": 141, "metadata": {}, "source": [ "1. What is `glob`?\n", @@ -974,7 +901,6 @@ }, { "cell_type": "markdown", - "idx_": 142, "metadata": {}, "source": [ "### Further Research" @@ -982,7 +908,6 @@ }, { "cell_type": "markdown", - "idx_": 143, "metadata": {}, "source": [ "1. Write `resnet18` from scratch (refer to <> as needed), and train it with the `Learner` in this chapter.\n", @@ -999,7 +924,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 144, "metadata": {}, "outputs": [], "source": [] @@ -1016,6 +940,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2, - "path_": "19_learner.ipynb" + "nbformat_minor": 2 } diff --git a/clean/20_conclusion.ipynb b/clean/20_conclusion.ipynb index a8e7de6..c2f9296 100644 --- a/clean/20_conclusion.ipynb +++ b/clean/20_conclusion.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -15,7 +14,6 @@ }, { "cell_type": "markdown", - "idx_": 2, "metadata": {}, "source": [ "# Concluding Thoughts" @@ -24,7 +22,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 6, "metadata": {}, "outputs": [], "source": [] @@ -41,6 +38,5 @@ } }, "nbformat": 4, - "nbformat_minor": 4, - "path_": "20_conclusion.ipynb" + "nbformat_minor": 4 } diff --git a/clean/app_blog.ipynb b/clean/app_blog.ipynb index 9c97f94..3e4cb99 100644 --- a/clean/app_blog.ipynb +++ b/clean/app_blog.ipynb @@ -2,7 +2,6 @@ "cells": [ { "cell_type": "markdown", - "idx_": 1, "metadata": {}, "source": [ "# Creating a Blog" @@ -10,7 +9,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "## Blogging with GitHub Pages" @@ -18,7 +16,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "### Creating the Repository" @@ -26,7 +23,6 @@ }, { "cell_type": "markdown", - "idx_": 7, "metadata": {}, "source": [ "### Setting Up Your Home Page" @@ -34,7 +30,6 @@ }, { "cell_type": "markdown", - "idx_": 11, "metadata": {}, "source": [ "### Creating Posts" @@ -42,7 +37,6 @@ }, { "cell_type": "markdown", - "idx_": 17, "metadata": {}, "source": [ "### Synchronizing GitHub and Your Computer" @@ -50,7 +44,6 @@ }, { "cell_type": "markdown", - "idx_": 21, "metadata": {}, "source": [ "## Jupyter for Blogging" @@ -59,7 +52,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 23, "metadata": {}, "outputs": [], "source": [] @@ -76,6 +68,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2, - "path_": "app_blog.ipynb" + "nbformat_minor": 2 } diff --git a/clean/app_jupyter.ipynb b/clean/app_jupyter.ipynb index cb3208e..1abdc82 100644 --- a/clean/app_jupyter.ipynb +++ b/clean/app_jupyter.ipynb @@ -3,7 +3,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 0, "metadata": {}, "outputs": [], "source": [ @@ -16,7 +15,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 1, "metadata": {}, "outputs": [], "source": [ @@ -25,7 +23,6 @@ }, { "cell_type": "markdown", - "idx_": 3, "metadata": {}, "source": [ "# Appendix: Jupyter Notebook 101" @@ -33,7 +30,6 @@ }, { "cell_type": "markdown", - "idx_": 5, "metadata": {}, "source": [ "## Introduction" @@ -42,7 +38,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 7, "metadata": {}, "outputs": [], "source": [ @@ -51,7 +46,6 @@ }, { "cell_type": "markdown", - "idx_": 9, "metadata": {}, "source": [ "## Writing" @@ -60,7 +54,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 13, "metadata": {}, "outputs": [], "source": [ @@ -69,7 +62,6 @@ }, { "cell_type": "markdown", - "idx_": 14, "metadata": {}, "source": [ "## Modes" @@ -77,7 +69,6 @@ }, { "cell_type": "markdown", - "idx_": 16, "metadata": {}, "source": [ "## Other Important Considerations" @@ -85,7 +76,6 @@ }, { "cell_type": "markdown", - "idx_": 19, "metadata": {}, "source": [ "## Markdown Formatting\n" @@ -93,7 +83,6 @@ }, { "cell_type": "markdown", - "idx_": 20, "metadata": {}, "source": [ "### Italics, Bold, Strikethrough, Inline, Blockquotes and Links" @@ -101,7 +90,6 @@ }, { "cell_type": "markdown", - "idx_": 22, "metadata": {}, "source": [ "### Headings" @@ -109,7 +97,6 @@ }, { "cell_type": "markdown", - "idx_": 24, "metadata": {}, "source": [ "### Lists" @@ -117,7 +104,6 @@ }, { "cell_type": "markdown", - "idx_": 26, "metadata": {}, "source": [ "## Code Capabilities" @@ -126,7 +112,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 28, "metadata": {}, "outputs": [], "source": [ @@ -138,7 +123,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 29, "metadata": {}, "outputs": [], "source": [ @@ -148,7 +132,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 30, "metadata": {}, "outputs": [], "source": [ @@ -162,7 +145,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 31, "metadata": {}, "outputs": [], "source": [ @@ -173,7 +155,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 33, "metadata": {}, "outputs": [], "source": [ @@ -182,7 +163,6 @@ }, { "cell_type": "markdown", - "idx_": 34, "metadata": {}, "source": [ "## Running the App Locally" @@ -190,7 +170,6 @@ }, { "cell_type": "markdown", - "idx_": 36, "metadata": {}, "source": [ "## Creating a Notebook" @@ -198,7 +177,6 @@ }, { "cell_type": "markdown", - "idx_": 38, "metadata": {}, "source": [ "## Shortcuts and Tricks" @@ -206,7 +184,6 @@ }, { "cell_type": "markdown", - "idx_": 40, "metadata": {}, "source": [ "### Command Mode Shortcuts" @@ -214,7 +191,6 @@ }, { "cell_type": "markdown", - "idx_": 42, "metadata": {}, "source": [ "### Cell Tricks" @@ -222,7 +198,6 @@ }, { "cell_type": "markdown", - "idx_": 44, "metadata": {}, "source": [ "### Line Magics" @@ -231,7 +206,6 @@ { "cell_type": "code", "execution_count": null, - "idx_": 46, "metadata": {}, "outputs": [], "source": [ @@ -247,6 +221,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2, - "path_": "app_jupyter.ipynb" + "nbformat_minor": 2 } diff --git a/tools/clean.py b/tools/clean.py index 8417184..e93e2b9 100755 --- a/tools/clean.py +++ b/tools/clean.py @@ -31,6 +31,11 @@ def proc_nb(fname, dest): nb['cells'] = [clean_tags(c) for j,c in enumerate(nb['cells']) if c['cell_type']=='code' or is_header_cell(c) or is_clean_cell(c) or j >= i] clean_nb(nb, clear_all=True) + if 'path_' in nb: + del nb['path_'] + for c in nb['cells']: + if 'idx_' in c: + del c['idx_'] with open(dest/fname.name, 'w') as f: nbformat.write(nb, f, version=4) def proc_all(path='.', dest_path='clean'): From f01550093eb6a0a70ea18c681b91d80997756984 Mon Sep 17 00:00:00 2001 From: gunchu Date: Wed, 29 Mar 2023 21:03:06 -0700 Subject: [PATCH 4/4] . --- .vscode/settings.json | 3 --- 1 file changed, 3 deletions(-) delete mode 100644 .vscode/settings.json diff --git a/.vscode/settings.json b/.vscode/settings.json deleted file mode 100644 index de288e1..0000000 --- a/.vscode/settings.json +++ /dev/null @@ -1,3 +0,0 @@ -{ - "python.formatting.provider": "black" -} \ No newline at end of file