change from weights to parameters - Jeremy mentioned in lesson 2

This commit is contained in:
Sarada Lee 2020-03-25 16:07:56 +08:00
parent e7d6ce606e
commit cbd4f35caa

View File

@ -1636,7 +1636,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"> jargon: Fine tuning: A transfer learning technique where the weights of a pretrained model are updated by training for additional epochs using a different task to that used for pretraining."
"> jargon: Fine tuning: A transfer learning technique where the parameters of a pretrained model are updated by training for additional epochs using a different task to that used for pretraining."
]
},
{
@ -2188,7 +2188,11 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"This model is using the IMDb dataset from the paper [Learning Word Vectors for Sentiment Analysis]((https://ai.stanford.edu/~amaas/data/sentiment/)). It works well with movie reviews of many thousands of words. But let's test it out on a very short one, to see it does its thing:"
]
@ -2196,7 +2200,11 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
@ -2294,7 +2302,11 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"> jargon: Tabular: Data that is in the form of a table, such as from a spreadsheet, database, or CSV file. A tabular model is a model which tries to predict one column of a table based on information in other columns of a table."
]
@ -2302,7 +2314,11 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [],
"source": [
"from fastai2.tabular.all import *\n",
@ -2319,7 +2335,11 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"As you see, we had to tell fastai which columns are *categorical* (that is, they contain values that are one of a discrete set of choices, such as `occupation`), versus *continuous* (that is, they contain a number that represents a quantity, such as `age`).\n",
"\n",
@ -2329,7 +2349,11 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
@ -2383,7 +2407,11 @@
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"pycharm": {
"name": "#%% md\n"
}
},
"source": [
"This model is using the *adult* dataset, from the paper [Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid](https://archive.ics.uci.edu/ml/datasets/adult), which contains some data regarding individuals (like their education, marital status, race, sex, etc.) and whether or not they have an annual income greater than \\$50k. The model is over 80\\% accurate, and took around 30 seconds to train.\n",
"\n",
@ -2393,7 +2421,11 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"metadata": {
"pycharm": {
"name": "#%%\n"
}
},
"outputs": [
{
"data": {
@ -2518,13 +2550,22 @@
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This model is predicting movie ratings on a scale of 0.5 to 5.0 to within around 0.6 average error. Since we're predicting a continuous number, rather than a category, we have to tell fastai what range our target has, using the `y_range` parameter.\n",
"\n",
"Although we're not actually using a pretrained model (for the same reason that we didn't for the tabular model), this example shows that fastai lets us use `fine_tune` even in this case (we'll learn how and why this works later in <<chapter_pet_breeds>>). Sometimes it's best to experiment with `fine_tune` versus `fit_one_cycle` to see which works best for your dataset.\n",
"\n",
"We can use the same `show_results` call we saw earlier to view a few examples of user and movie IDs, actual ratings, and predictions:"
],
"metadata": {
"collapsed": false
}
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"learn.show_results()"
]
},
{
@ -2928,6 +2969,15 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
},
"pycharm": {
"stem_cell": {
"cell_type": "raw",
"source": [],
"metadata": {
"collapsed": false
}
}
}
},
"nbformat": 4,