mirror of
https://github.com/fastai/fastbook.git
synced 2025-04-04 01:40:44 +00:00
fastai
This commit is contained in:
parent
5cf040c55c
commit
efff9626b0
@ -568,7 +568,7 @@
|
||||
"#id first_training\n",
|
||||
"#caption Results from the first training\n",
|
||||
"# CLICK ME\n",
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"path = untar_data(URLs.PETS)/'images'\n",
|
||||
"\n",
|
||||
"def is_cat(x): return x[0].isupper()\n",
|
||||
@ -1473,7 +1473,7 @@
|
||||
"The first line imports all of the fastai.vision library.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"This gives us all of the functions and classes we will need to create a wide variety of computer vision models."
|
||||
@ -2156,7 +2156,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from fastai2.text.all import *\n",
|
||||
"from fastai.text.all import *\n",
|
||||
"\n",
|
||||
"dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')\n",
|
||||
"learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, metrics=accuracy)\n",
|
||||
@ -2171,7 +2171,7 @@
|
||||
"If you hit a \"CUDA out of memory error\" after running this cell, click on the menu Kernel, then restart. Instead of executing the cell above, copy and paste the following code in it:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"from fastai2.text.all import *\n",
|
||||
"from fastai.text.all import *\n",
|
||||
"\n",
|
||||
"dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test', bs=32)\n",
|
||||
"learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, metrics=accuracy)\n",
|
||||
@ -2241,7 +2241,7 @@
|
||||
"In a Jupyter notebook, the order in which you execute each cell is very important. It's not like Excel, where everything gets updated as soon as you type something anywhere—it has an inner state that gets updated each time you execute a cell. For instance, when you run the first cell of the notebook (with the \"CLICK ME\" comment), you create an object called `learn` that contains a model and data for an image classification problem. If we were to run the cell just shown in the text (the one that predicts if a review is good or not) straight after, we would get an error as this `learn` object does not contain a text classification model. This cell needs to be run after the one containing:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"from fastai2.text.all import *\n",
|
||||
"from fastai.text.all import *\n",
|
||||
"\n",
|
||||
"dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')\n",
|
||||
"learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, \n",
|
||||
@ -2307,7 +2307,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.tabular.all import *\n",
|
||||
"from fastai.tabular.all import *\n",
|
||||
"path = untar_data(URLs.ADULT_SAMPLE)\n",
|
||||
"\n",
|
||||
"dls = TabularDataLoaders.from_csv(path/'adult.csv', path=path, y_names=\"salary\",\n",
|
||||
@ -2516,7 +2516,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from fastai2.collab import *\n",
|
||||
"from fastai.collab import *\n",
|
||||
"path = untar_data(URLs.ML_SAMPLE)\n",
|
||||
"dls = CollabDataLoaders.from_csv(path/'ratings.csv')\n",
|
||||
"learn = collab_learner(dls, y_range=(0.5,5.5))\n",
|
||||
@ -2932,6 +2932,31 @@
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.7"
|
||||
},
|
||||
"toc": {
|
||||
"base_numbering": 1,
|
||||
"nav_menu": {},
|
||||
"number_sections": false,
|
||||
"sideBar": true,
|
||||
"skip_h1_title": true,
|
||||
"title_cell": "Table of Contents",
|
||||
"title_sidebar": "Contents",
|
||||
"toc_cell": false,
|
||||
"toc_position": {},
|
||||
"toc_section_display": true,
|
||||
"toc_window_display": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -20,7 +20,7 @@
|
||||
"source": [
|
||||
"#hide\n",
|
||||
"from fastbook import *\n",
|
||||
"from fastai2.vision.widgets import *"
|
||||
"from fastai.vision.widgets import *"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -1976,6 +1976,31 @@
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.7"
|
||||
},
|
||||
"toc": {
|
||||
"base_numbering": 1,
|
||||
"nav_menu": {},
|
||||
"number_sections": false,
|
||||
"sideBar": true,
|
||||
"skip_h1_title": true,
|
||||
"title_cell": "Table of Contents",
|
||||
"title_sidebar": "Contents",
|
||||
"toc_cell": false,
|
||||
"toc_position": {},
|
||||
"toc_section_display": true,
|
||||
"toc_window_display": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -1054,6 +1054,31 @@
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.7"
|
||||
},
|
||||
"toc": {
|
||||
"base_numbering": 1,
|
||||
"nav_menu": {},
|
||||
"number_sections": false,
|
||||
"sideBar": true,
|
||||
"skip_h1_title": true,
|
||||
"title_cell": "Table of Contents",
|
||||
"title_sidebar": "Contents",
|
||||
"toc_cell": false,
|
||||
"toc_position": {},
|
||||
"toc_section_display": true,
|
||||
"toc_window_display": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -19,7 +19,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#hide\n",
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"from fastbook import *\n",
|
||||
"\n",
|
||||
"matplotlib.rc('image', cmap='Greys')"
|
||||
@ -5856,6 +5856,31 @@
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.7"
|
||||
},
|
||||
"toc": {
|
||||
"base_numbering": 1,
|
||||
"nav_menu": {},
|
||||
"number_sections": false,
|
||||
"sideBar": true,
|
||||
"skip_h1_title": true,
|
||||
"title_cell": "Table of Contents",
|
||||
"title_sidebar": "Contents",
|
||||
"toc_cell": false,
|
||||
"toc_position": {},
|
||||
"toc_section_display": true,
|
||||
"toc_window_display": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -76,7 +76,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"path = untar_data(URLs.PETS)"
|
||||
]
|
||||
},
|
||||
@ -451,12 +451,12 @@
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-11-8c0a3d421ca2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0msplitter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mRandomSplitter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m42\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m get_y=using_attr(RegexLabeller(r'(.+)_\\d+.jpg$'), 'name'))\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mpets1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msummary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;34m\"images\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[0;32m~/git/fastai2/fastai2/data/block.py\u001b[0m in \u001b[0;36msummary\u001b[0;34m(self, source, bs, show_batch, **kwargs)\u001b[0m\n\u001b[1;32m 182\u001b[0m \u001b[0mwhy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_find_fail_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Make sure all parts of your samples are tensors of the same size\"\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mwhy\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mwhy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 184\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mf\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mafter_batch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfs\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'noop'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m!=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai2/fastai2/data/block.py\u001b[0m in \u001b[0;36msummary\u001b[0;34m(self, source, bs, show_batch, **kwargs)\u001b[0m\n\u001b[1;32m 176\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"\\nCollating items in a batch\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 177\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 178\u001b[0;31m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 179\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mretain_types\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_listy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai2/fastai2/data/load.py\u001b[0m in \u001b[0;36mcreate_batch\u001b[0;34m(self, b)\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mretain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mretain_types\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_listy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 126\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcreate_item\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mit\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 127\u001b[0;31m \u001b[0;32mdef\u001b[0m \u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mfa_convert\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprebatched\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 128\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdo_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbefore_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai2/fastai2/data/load.py\u001b[0m in \u001b[0;36mfa_collate\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m else default_collate(t))\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai2/fastai2/data/load.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m else default_collate(t))\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai2/fastai2/data/load.py\u001b[0m in \u001b[0;36mfa_collate\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0m\u001b[1;32m 46\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m else default_collate(t))\n",
|
||||
"\u001b[0;32m~/git/fastai/fastai/data/block.py\u001b[0m in \u001b[0;36msummary\u001b[0;34m(self, source, bs, show_batch, **kwargs)\u001b[0m\n\u001b[1;32m 182\u001b[0m \u001b[0mwhy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_find_fail_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Make sure all parts of your samples are tensors of the same size\"\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mwhy\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mwhy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 184\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mf\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mafter_batch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfs\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'noop'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m!=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai/fastai/data/block.py\u001b[0m in \u001b[0;36msummary\u001b[0;34m(self, source, bs, show_batch, **kwargs)\u001b[0m\n\u001b[1;32m 176\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"\\nCollating items in a batch\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 177\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 178\u001b[0;31m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 179\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mretain_types\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_listy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai/fastai/data/load.py\u001b[0m in \u001b[0;36mcreate_batch\u001b[0;34m(self, b)\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mretain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mretain_types\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_listy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 126\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcreate_item\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mit\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 127\u001b[0;31m \u001b[0;32mdef\u001b[0m \u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mfa_convert\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprebatched\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 128\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdo_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbefore_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai/fastai/data/load.py\u001b[0m in \u001b[0;36mfa_collate\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m else default_collate(t))\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai/fastai/data/load.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m else default_collate(t))\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai/fastai/data/load.py\u001b[0m in \u001b[0;36mfa_collate\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0m\u001b[1;32m 46\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m else default_collate(t))\n",
|
||||
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/torch/utils/data/_utils/collate.py\u001b[0m in \u001b[0;36mdefault_collate\u001b[0;34m(batch)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mstorage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0melem\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstorage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_new_shared\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0melem\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnew\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstorage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0melem_type\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__module__\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'numpy'\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0melem_type\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'str_'\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0melem_type\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'string_'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;31mRuntimeError\u001b[0m: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 414 and 375 in dimension 2 at /opt/conda/conda-bld/pytorch_1579022060824/work/aten/src/TH/generic/THTensor.cpp:612"
|
||||
]
|
||||
@ -2457,7 +2457,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from fastai2.callback.fp16 import *\n",
|
||||
"from fastai.callback.fp16 import *\n",
|
||||
"learn = cnn_learner(dls, resnet50, metrics=error_rate).to_fp16()\n",
|
||||
"learn.fine_tune(6, freeze_epochs=3)"
|
||||
]
|
||||
@ -2558,6 +2558,31 @@
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.7"
|
||||
},
|
||||
"toc": {
|
||||
"base_numbering": 1,
|
||||
"nav_menu": {},
|
||||
"number_sections": false,
|
||||
"sideBar": true,
|
||||
"skip_h1_title": true,
|
||||
"title_cell": "Table of Contents",
|
||||
"title_sidebar": "Contents",
|
||||
"toc_cell": false,
|
||||
"toc_position": {},
|
||||
"toc_section_display": true,
|
||||
"toc_window_display": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -89,7 +89,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"path = untar_data(URLs.PASCAL_2007)"
|
||||
]
|
||||
},
|
||||
@ -2164,6 +2164,31 @@
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.7"
|
||||
},
|
||||
"toc": {
|
||||
"base_numbering": 1,
|
||||
"nav_menu": {},
|
||||
"number_sections": false,
|
||||
"sideBar": true,
|
||||
"skip_h1_title": true,
|
||||
"title_cell": "Table of Contents",
|
||||
"title_sidebar": "Contents",
|
||||
"toc_cell": false,
|
||||
"toc_position": {},
|
||||
"toc_section_display": true,
|
||||
"toc_window_display": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -81,7 +81,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"path = untar_data(URLs.IMAGENETTE)"
|
||||
]
|
||||
},
|
||||
|
@ -83,8 +83,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.collab import *\n",
|
||||
"from fastai2.tabular.all import *\n",
|
||||
"from fastai.collab import *\n",
|
||||
"from fastai.tabular.all import *\n",
|
||||
"path = untar_data(URLs.ML_100k)"
|
||||
]
|
||||
},
|
||||
@ -2347,6 +2347,31 @@
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.7"
|
||||
},
|
||||
"toc": {
|
||||
"base_numbering": 1,
|
||||
"nav_menu": {},
|
||||
"number_sections": false,
|
||||
"sideBar": true,
|
||||
"skip_h1_title": true,
|
||||
"title_cell": "Table of Contents",
|
||||
"title_sidebar": "Contents",
|
||||
"toc_cell": false,
|
||||
"toc_position": {},
|
||||
"toc_section_display": true,
|
||||
"toc_window_display": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -32,7 +32,7 @@
|
||||
"from fastbook import *\n",
|
||||
"from kaggle import api\n",
|
||||
"from pandas.api.types import is_string_dtype, is_numeric_dtype, is_categorical_dtype\n",
|
||||
"from fastai2.tabular.all import *\n",
|
||||
"from fastai.tabular.all import *\n",
|
||||
"from sklearn.ensemble import RandomForestRegressor\n",
|
||||
"from sklearn.tree import DecisionTreeRegressor\n",
|
||||
"from dtreeviz.trees import *\n",
|
||||
@ -9379,7 +9379,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.tabular.all import *"
|
||||
"from fastai.tabular.all import *"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -9828,6 +9828,31 @@
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.7"
|
||||
},
|
||||
"toc": {
|
||||
"base_numbering": 1,
|
||||
"nav_menu": {},
|
||||
"number_sections": false,
|
||||
"sideBar": true,
|
||||
"skip_h1_title": true,
|
||||
"title_cell": "Table of Contents",
|
||||
"title_sidebar": "Contents",
|
||||
"toc_cell": false,
|
||||
"toc_position": {},
|
||||
"toc_section_display": true,
|
||||
"toc_window_display": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
18
10_nlp.ipynb
18
10_nlp.ipynb
@ -172,7 +172,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.text.all import *\n",
|
||||
"from fastai.text.all import *\n",
|
||||
"path = untar_data(URLs.IMDB)"
|
||||
]
|
||||
},
|
||||
@ -328,14 +328,14 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[<function fastai2.text.core.fix_html(x)>,\n",
|
||||
" <function fastai2.text.core.replace_rep(t)>,\n",
|
||||
" <function fastai2.text.core.replace_wrep(t)>,\n",
|
||||
" <function fastai2.text.core.spec_add_spaces(t)>,\n",
|
||||
" <function fastai2.text.core.rm_useless_spaces(t)>,\n",
|
||||
" <function fastai2.text.core.replace_all_caps(t)>,\n",
|
||||
" <function fastai2.text.core.replace_maj(t)>,\n",
|
||||
" <function fastai2.text.core.lowercase(t, add_bos=True, add_eos=False)>]"
|
||||
"[<function fastai.text.core.fix_html(x)>,\n",
|
||||
" <function fastai.text.core.replace_rep(t)>,\n",
|
||||
" <function fastai.text.core.replace_wrep(t)>,\n",
|
||||
" <function fastai.text.core.spec_add_spaces(t)>,\n",
|
||||
" <function fastai.text.core.rm_useless_spaces(t)>,\n",
|
||||
" <function fastai.text.core.replace_all_caps(t)>,\n",
|
||||
" <function fastai.text.core.replace_maj(t)>,\n",
|
||||
" <function fastai.text.core.lowercase(t, add_bos=True, add_eos=False)>]"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
|
@ -64,7 +64,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.text.all import *\n",
|
||||
"from fastai.text.all import *\n",
|
||||
"\n",
|
||||
"dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')"
|
||||
]
|
||||
@ -939,7 +939,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"path = untar_data(URLs.PETS)\n",
|
||||
"files = get_image_files(path/\"images\")"
|
||||
]
|
||||
|
@ -79,7 +79,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.text.all import *\n",
|
||||
"from fastai.text.all import *\n",
|
||||
"path = untar_data(URLs.HUMAN_NUMBERS)"
|
||||
]
|
||||
},
|
||||
|
@ -19,7 +19,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#hide\n",
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"from fastbook import *\n",
|
||||
"\n",
|
||||
"matplotlib.rc('image', cmap='Greys')"
|
||||
@ -2873,7 +2873,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.callback.hook import *"
|
||||
"from fastai.callback.hook import *"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -86,7 +86,7 @@
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'cut': -2,\n",
|
||||
" 'split': <function fastai2.vision.learner._resnet_split(m)>,\n",
|
||||
" 'split': <function fastai.vision.learner._resnet_split(m)>,\n",
|
||||
" 'stats': ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])}"
|
||||
]
|
||||
},
|
||||
@ -262,7 +262,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#hide\n",
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"path = untar_data(URLs.PETS)\n",
|
||||
"files = get_image_files(path/\"images\")\n",
|
||||
"\n",
|
||||
|
@ -29,7 +29,7 @@
|
||||
"source": [
|
||||
"#hide\n",
|
||||
"from fastbook import *\n",
|
||||
"from fastai2.vision.widgets import *"
|
||||
"from fastai.vision.widgets import *"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -301,7 +301,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Import necessary libraries\n",
|
||||
"from fastai2.vision.all import * \n",
|
||||
"from fastai.vision.all import * \n",
|
||||
"import matplotlib.pyplot as plt"
|
||||
]
|
||||
},
|
||||
|
@ -150,7 +150,7 @@
|
||||
],
|
||||
"source": [
|
||||
"# CLICK ME\n",
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"path = untar_data(URLs.PETS)/'images'\n",
|
||||
"\n",
|
||||
"def is_cat(x): return x[0].isupper()\n",
|
||||
@ -1056,7 +1056,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from fastai2.text.all import *\n",
|
||||
"from fastai.text.all import *\n",
|
||||
"\n",
|
||||
"dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')\n",
|
||||
"learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, metrics=accuracy)\n",
|
||||
@ -1070,7 +1070,7 @@
|
||||
"If you hit a \"CUDA out of memory error\" after running this cell, click on the menu Kernel, then restart. Instead of executing the cell above, copy and paste the following code in it:\n",
|
||||
"\n",
|
||||
"```\n",
|
||||
"from fastai2.text.all import *\n",
|
||||
"from fastai.text.all import *\n",
|
||||
"\n",
|
||||
"dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test', bs=32)\n",
|
||||
"learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, metrics=accuracy)\n",
|
||||
@ -1130,7 +1130,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.tabular.all import *\n",
|
||||
"from fastai.tabular.all import *\n",
|
||||
"path = untar_data(URLs.ADULT_SAMPLE)\n",
|
||||
"\n",
|
||||
"dls = TabularDataLoaders.from_csv(path/'adult.csv', path=path, y_names=\"salary\",\n",
|
||||
@ -1316,7 +1316,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from fastai2.collab import *\n",
|
||||
"from fastai.collab import *\n",
|
||||
"path = untar_data(URLs.ML_SAMPLE)\n",
|
||||
"dls = CollabDataLoaders.from_csv(path/'ratings.csv')\n",
|
||||
"learn = collab_learner(dls, y_range=(0.5,5.5))\n",
|
||||
|
@ -8,7 +8,7 @@
|
||||
"source": [
|
||||
"#hide\n",
|
||||
"from utils import *\n",
|
||||
"from fastai2.vision.widgets import *"
|
||||
"from fastai.vision.widgets import *"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -7,7 +7,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#hide\n",
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"from utils import *\n",
|
||||
"\n",
|
||||
"matplotlib.rc('image', cmap='Greys')"
|
||||
|
@ -30,7 +30,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"path = untar_data(URLs.PETS)"
|
||||
]
|
||||
},
|
||||
@ -270,12 +270,12 @@
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-11-8c0a3d421ca2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0msplitter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mRandomSplitter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m42\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m get_y=using_attr(RegexLabeller(r'(.+)_\\d+.jpg$'), 'name'))\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mpets1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msummary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;34m\"images\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[0;32m~/git/fastai2/fastai2/data/block.py\u001b[0m in \u001b[0;36msummary\u001b[0;34m(self, source, bs, show_batch, **kwargs)\u001b[0m\n\u001b[1;32m 182\u001b[0m \u001b[0mwhy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_find_fail_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Make sure all parts of your samples are tensors of the same size\"\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mwhy\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mwhy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 184\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mf\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mafter_batch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfs\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'noop'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m!=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai2/fastai2/data/block.py\u001b[0m in \u001b[0;36msummary\u001b[0;34m(self, source, bs, show_batch, **kwargs)\u001b[0m\n\u001b[1;32m 176\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"\\nCollating items in a batch\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 177\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 178\u001b[0;31m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 179\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mretain_types\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_listy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai2/fastai2/data/load.py\u001b[0m in \u001b[0;36mcreate_batch\u001b[0;34m(self, b)\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mretain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mretain_types\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_listy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 126\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcreate_item\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mit\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 127\u001b[0;31m \u001b[0;32mdef\u001b[0m \u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mfa_convert\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprebatched\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 128\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdo_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbefore_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai2/fastai2/data/load.py\u001b[0m in \u001b[0;36mfa_collate\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m else default_collate(t))\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai2/fastai2/data/load.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m else default_collate(t))\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai2/fastai2/data/load.py\u001b[0m in \u001b[0;36mfa_collate\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0m\u001b[1;32m 46\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m else default_collate(t))\n",
|
||||
"\u001b[0;32m~/git/fastai/fastai/data/block.py\u001b[0m in \u001b[0;36msummary\u001b[0;34m(self, source, bs, show_batch, **kwargs)\u001b[0m\n\u001b[1;32m 182\u001b[0m \u001b[0mwhy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_find_fail_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Make sure all parts of your samples are tensors of the same size\"\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mwhy\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mwhy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 184\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mf\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mafter_batch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfs\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'noop'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m!=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai/fastai/data/block.py\u001b[0m in \u001b[0;36msummary\u001b[0;34m(self, source, bs, show_batch, **kwargs)\u001b[0m\n\u001b[1;32m 176\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"\\nCollating items in a batch\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 177\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 178\u001b[0;31m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 179\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mretain_types\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_listy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai/fastai/data/load.py\u001b[0m in \u001b[0;36mcreate_batch\u001b[0;34m(self, b)\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mretain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mretain_types\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_listy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 126\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcreate_item\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mit\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 127\u001b[0;31m \u001b[0;32mdef\u001b[0m \u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mfa_convert\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprebatched\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 128\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdo_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbefore_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai/fastai/data/load.py\u001b[0m in \u001b[0;36mfa_collate\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m else default_collate(t))\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai/fastai/data/load.py\u001b[0m in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m else default_collate(t))\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/git/fastai/fastai/data/load.py\u001b[0m in \u001b[0;36mfa_collate\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0m\u001b[1;32m 46\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m else default_collate(t))\n",
|
||||
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/torch/utils/data/_utils/collate.py\u001b[0m in \u001b[0;36mdefault_collate\u001b[0;34m(batch)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mstorage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0melem\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstorage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_new_shared\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0melem\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnew\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstorage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0melem_type\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__module__\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'numpy'\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0melem_type\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'str_'\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0melem_type\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'string_'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;31mRuntimeError\u001b[0m: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 414 and 375 in dimension 2 at /opt/conda/conda-bld/pytorch_1579022060824/work/aten/src/TH/generic/THTensor.cpp:612"
|
||||
]
|
||||
@ -1683,7 +1683,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from fastai2.callback.fp16 import *\n",
|
||||
"from fastai.callback.fp16 import *\n",
|
||||
"learn = cnn_learner(dls, resnet50, metrics=error_rate).to_fp16()\n",
|
||||
"learn.fine_tune(6, freeze_epochs=3)"
|
||||
]
|
||||
|
@ -37,7 +37,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"path = untar_data(URLs.PASCAL_2007)"
|
||||
]
|
||||
},
|
||||
|
@ -30,7 +30,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"path = untar_data(URLs.IMAGENETTE)"
|
||||
]
|
||||
},
|
||||
|
@ -30,8 +30,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.collab import *\n",
|
||||
"from fastai2.tabular.all import *\n",
|
||||
"from fastai.collab import *\n",
|
||||
"from fastai.tabular.all import *\n",
|
||||
"path = untar_data(URLs.ML_100k)"
|
||||
]
|
||||
},
|
||||
|
@ -20,7 +20,7 @@
|
||||
"from utils import *\n",
|
||||
"from kaggle import api\n",
|
||||
"from pandas.api.types import is_string_dtype, is_numeric_dtype, is_categorical_dtype\n",
|
||||
"from fastai2.tabular.all import *\n",
|
||||
"from fastai.tabular.all import *\n",
|
||||
"from sklearn.ensemble import RandomForestRegressor\n",
|
||||
"from sklearn.tree import DecisionTreeRegressor\n",
|
||||
"from dtreeviz.trees import *\n",
|
||||
@ -8136,7 +8136,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.tabular.all import *"
|
||||
"from fastai.tabular.all import *"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -45,7 +45,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.text.all import *\n",
|
||||
"from fastai.text.all import *\n",
|
||||
"path = untar_data(URLs.IMDB)"
|
||||
]
|
||||
},
|
||||
@ -143,14 +143,14 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[<function fastai2.text.core.fix_html(x)>,\n",
|
||||
" <function fastai2.text.core.replace_rep(t)>,\n",
|
||||
" <function fastai2.text.core.replace_wrep(t)>,\n",
|
||||
" <function fastai2.text.core.spec_add_spaces(t)>,\n",
|
||||
" <function fastai2.text.core.rm_useless_spaces(t)>,\n",
|
||||
" <function fastai2.text.core.replace_all_caps(t)>,\n",
|
||||
" <function fastai2.text.core.replace_maj(t)>,\n",
|
||||
" <function fastai2.text.core.lowercase(t, add_bos=True, add_eos=False)>]"
|
||||
"[<function fastai.text.core.fix_html(x)>,\n",
|
||||
" <function fastai.text.core.replace_rep(t)>,\n",
|
||||
" <function fastai.text.core.replace_wrep(t)>,\n",
|
||||
" <function fastai.text.core.spec_add_spaces(t)>,\n",
|
||||
" <function fastai.text.core.rm_useless_spaces(t)>,\n",
|
||||
" <function fastai.text.core.replace_all_caps(t)>,\n",
|
||||
" <function fastai.text.core.replace_maj(t)>,\n",
|
||||
" <function fastai.text.core.lowercase(t, add_bos=True, add_eos=False)>]"
|
||||
]
|
||||
},
|
||||
"execution_count": null,
|
||||
|
@ -31,7 +31,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.text.all import *\n",
|
||||
"from fastai.text.all import *\n",
|
||||
"\n",
|
||||
"dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')"
|
||||
]
|
||||
@ -608,7 +608,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"path = untar_data(URLs.PETS)\n",
|
||||
"files = get_image_files(path/\"images\")"
|
||||
]
|
||||
|
@ -30,7 +30,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.text.all import *\n",
|
||||
"from fastai.text.all import *\n",
|
||||
"path = untar_data(URLs.HUMAN_NUMBERS)"
|
||||
]
|
||||
},
|
||||
|
@ -7,7 +7,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#hide\n",
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"from utils import *\n",
|
||||
"\n",
|
||||
"matplotlib.rc('image', cmap='Greys')"
|
||||
@ -2020,7 +2020,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from fastai2.callback.hook import *"
|
||||
"from fastai.callback.hook import *"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -40,7 +40,7 @@
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'cut': -2,\n",
|
||||
" 'split': <function fastai2.vision.learner._resnet_split(m)>,\n",
|
||||
" 'split': <function fastai.vision.learner._resnet_split(m)>,\n",
|
||||
" 'stats': ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])}"
|
||||
]
|
||||
},
|
||||
@ -107,7 +107,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#hide\n",
|
||||
"from fastai2.vision.all import *\n",
|
||||
"from fastai.vision.all import *\n",
|
||||
"path = untar_data(URLs.PETS)\n",
|
||||
"files = get_image_files(path/\"images\")\n",
|
||||
"\n",
|
||||
|
@ -8,7 +8,7 @@
|
||||
"source": [
|
||||
"#hide\n",
|
||||
"from utils import *\n",
|
||||
"from fastai2.vision.widgets import *"
|
||||
"from fastai.vision.widgets import *"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -117,7 +117,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Import necessary libraries\n",
|
||||
"from fastai2.vision.all import * \n",
|
||||
"from fastai.vision.all import * \n",
|
||||
"import matplotlib.pyplot as plt"
|
||||
]
|
||||
},
|
||||
|
@ -1,5 +1,5 @@
|
||||
# Numpy and pandas by default assume a narrow screen - this fixes that
|
||||
from fastai2.vision.all import *
|
||||
from fastai.vision.all import *
|
||||
from nbdev.showdoc import *
|
||||
from ipywidgets import widgets
|
||||
from pandas.api.types import CategoricalDtype
|
||||
|
@ -1,4 +1,4 @@
|
||||
fastai2>=0.0.11
|
||||
fastai>=0.0.11
|
||||
graphviz
|
||||
ipywidgets
|
||||
matplotlib
|
||||
|
Loading…
Reference in New Issue
Block a user