{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#hide\n", "!pip install -Uqq fastbook\n", "import fastbook\n", "fastbook.setup_book()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#hide\n", "from fastbook import *" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Image Classification" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## From Dogs and Cats to Pet Breeds" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from fastai.vision.all import *\n", "path = untar_data(URLs.PETS)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#hide\n", "Path.BASE_PATH = path" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "path.ls()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "(path/\"images\").ls()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fname = (path/\"images\").ls()[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "re.findall(r'(.+)_\\d+.jpg$', fname.name)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pets = DataBlock(blocks = (ImageBlock, CategoryBlock),\n", " get_items=get_image_files, \n", " splitter=RandomSplitter(seed=42),\n", " get_y=using_attr(RegexLabeller(r'(.+)_\\d+.jpg$'), 'name'),\n", " item_tfms=Resize(460),\n", " batch_tfms=aug_transforms(size=224, min_scale=0.75))\n", "dls = pets.dataloaders(path/\"images\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Presizing" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dblock1 = DataBlock(blocks=(ImageBlock(), CategoryBlock()),\n", " get_y=parent_label,\n", " item_tfms=Resize(460))\n", "# Place an image in the 'images/grizzly.jpg' subfolder where this notebook is located before running this\n", "dls1 = dblock1.dataloaders([(Path.cwd()/'images'/'grizzly.jpg')]*100, bs=8)\n", "dls1.train.get_idxs = lambda: Inf.ones\n", "x,y = dls1.valid.one_batch()\n", "_,axs = subplots(1, 2)\n", "\n", "x1 = TensorImage(x.clone())\n", "x1 = x1.affine_coord(sz=224)\n", "x1 = x1.rotate(draw=30, p=1.)\n", "x1 = x1.zoom(draw=1.2, p=1.)\n", "x1 = x1.warp(draw_x=-0.2, draw_y=0.2, p=1.)\n", "\n", "tfms = setup_aug_tfms([Rotate(draw=30, p=1, size=224), Zoom(draw=1.2, p=1., size=224),\n", " Warp(draw_x=-0.2, draw_y=0.2, p=1., size=224)])\n", "x = Pipeline(tfms)(x)\n", "#x.affine_coord(coord_tfm=coord_tfm, sz=size, mode=mode, pad_mode=pad_mode)\n", "TensorImage(x[0]).show(ctx=axs[0])\n", "TensorImage(x1[0]).show(ctx=axs[1]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Checking and Debugging a DataBlock" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dls.show_batch(nrows=1, ncols=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "pets1 = DataBlock(blocks = (ImageBlock, CategoryBlock),\n", " get_items=get_image_files, \n", " splitter=RandomSplitter(seed=42),\n", " get_y=using_attr(RegexLabeller(r'(.+)_\\d+.jpg$'), 'name'))\n", "pets1.summary(path/\"images\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "learn = cnn_learner(dls, resnet34, metrics=error_rate)\n", "learn.fine_tune(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Cross-Entropy Loss" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Viewing Activations and Labels" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "x,y = dls.one_batch()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "y" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "preds,_ = learn.get_preds(dl=[(x,y)])\n", "preds[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "len(preds[0]),preds[0].sum()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Softmax" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plot_function(torch.sigmoid, min=-4,max=4)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#hide\n", "torch.random.manual_seed(42);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "acts = torch.randn((6,2))*2\n", "acts" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "acts.sigmoid()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "(acts[:,0]-acts[:,1]).sigmoid()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sm_acts = torch.softmax(acts, dim=1)\n", "sm_acts" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Log Likelihood" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "targ = tensor([0,1,0,1,1,0])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "sm_acts" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "idx = range(6)\n", "sm_acts[idx, targ]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from IPython.display import HTML\n", "df = pd.DataFrame(sm_acts, columns=[\"3\",\"7\"])\n", "df['targ'] = targ\n", "df['idx'] = idx\n", "df['result'] = sm_acts[range(6), targ]\n", "t = df.style.hide_index()\n", "#To have html code compatible with our script\n", "html = t._repr_html_().split('')[1]\n", "html = re.sub(r'