{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#hide\n", "from utils import *" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Application architectures deep dive" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Computer vision" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### cnn_learner" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'cut': -2,\n", " 'split': ,\n", " 'stats': ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])}" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model_meta[resnet50]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Sequential(\n", " (0): AdaptiveConcatPool2d(\n", " (ap): AdaptiveAvgPool2d(output_size=1)\n", " (mp): AdaptiveMaxPool2d(output_size=1)\n", " )\n", " (1): full: False\n", " (2): BatchNorm1d(20, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (3): Dropout(p=0.25, inplace=False)\n", " (4): Linear(in_features=20, out_features=512, bias=False)\n", " (5): ReLU(inplace=True)\n", " (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", " (7): Dropout(p=0.5, inplace=False)\n", " (8): Linear(in_features=512, out_features=2, bias=False)\n", ")" ] }, "execution_count": null, "metadata": {}, "output_type": "execute_result" } ], "source": [ "create_head(20,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### unet_learner" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### A Siamese network" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "#hide\n", "from fastai2.vision.all import *\n", "path = untar_data(URLs.PETS)\n", "files = get_image_files(path/\"images\")\n", "\n", "class SiameseImage(Tuple):\n", " def show(self, ctx=None, **kwargs): \n", " img1,img2,same_breed = self\n", " if not isinstance(img1, Tensor):\n", " if img2.size != img1.size: img2 = img2.resize(img1.size)\n", " t1,t2 = tensor(img1),tensor(img2)\n", " t1,t2 = t1.permute(2,0,1),t2.permute(2,0,1)\n", " else: t1,t2 = img1,img2\n", " line = t1.new_zeros(t1.shape[0], t1.shape[1], 10)\n", " return show_image(torch.cat([t1,line,t2], dim=2), \n", " title=same_breed, ctx=ctx)\n", " \n", "def label_func(fname):\n", " return re.match(r'^(.*)_\\d+.jpg$', fname.name).groups()[0]\n", "\n", "class SiameseTransform(Transform):\n", " def __init__(self, files, label_func, splits):\n", " self.labels = files.map(label_func).unique()\n", " self.lbl2files = {l: L(f for f in files if label_func(f) == l) for l in self.labels}\n", " self.label_func = label_func\n", " self.valid = {f: self._draw(f) for f in files[splits[1]]}\n", " \n", " def encodes(self, f):\n", " f2,t = self.valid.get(f, self._draw(f))\n", " img1,img2 = PILImage.create(f),PILImage.create(f2)\n", " return SiameseImage(img1, img2, t)\n", " \n", " def _draw(self, f):\n", " same = random.random() < 0.5\n", " cls = self.label_func(f)\n", " if not same: cls = random.choice(L(l for l in self.labels if l != cls)) \n", " return random.choice(self.lbl2files[cls]),same\n", " \n", "splits = RandomSplitter()(files)\n", "tfm = SiameseTransform(files, label_func, splits)\n", "tls = TfmdLists(files, tfm, splits=splits)\n", "dls = tls.dataloaders(after_item=[Resize(224), ToTensor], \n", " after_batch=[IntToFloatTensor, Normalize.from_stats(*imagenet_stats)])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "class SiameseModel(Module):\n", " def __init__(self, encoder, head):\n", " self.encoder,self.head = encoder,head\n", " \n", " def forward(self, x1, x2):\n", " ftrs = torch.cat([self.encoder(x1), self.encoder(x2)], dim=1)\n", " return self.head(ftrs)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "encoder = create_body(resnet34, cut=-2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "head = create_head(512*4, 2, ps=0.5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model = SiameseModel(encoder, head)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "def loss_func(out, targ):\n", " return nn.CrossEntropyLoss()(out, targ.long())" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "def siamese_splitter(model):\n", " return [params(model.encoder), params(model.head)]" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "learn = Learner(dls, model, loss_func=loss_func, \n", " splitter=siamese_splitter, metrics=accuracy)\n", "learn.freeze()" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
epochtrain_lossvalid_lossaccuracytime
00.3670150.2812420.88565600:26
10.3076880.2147210.91542600:26
20.2752210.1706150.93640100:26
30.2237710.1596330.94384300:26
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "learn.fit_one_cycle(4, 3e-3)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
epochtrain_lossvalid_lossaccuracytime
00.2127440.1590330.94452000:35
10.2018930.1596150.94249000:35
20.2046060.1523380.94519600:36
30.2132030.1483460.94790300:36
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "learn.unfreeze()\n", "learn.fit_one_cycle(4, slice(1e-6,1e-4))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Natural language processing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tabular" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Wrapping up architectures" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Questionnaire" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Further research" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "jupytext": { "split_at_heading": true }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 2 }