diff --git a/microring_dynamics.py b/microring_dynamics.py index 3eda9ca..fbb4c48 100644 --- a/microring_dynamics.py +++ b/microring_dynamics.py @@ -7,8 +7,7 @@ K = 0.1 t = np.sqrt(T) + 0.0j k = 0.0 - 1j * np.sqrt(K) -Coupler = np.array([[t, k], - [k.conjugate(), -t.conjugate()]]) +Coupler = np.array([[t, k], [k.conjugate(), -t.conjugate()]]) num_cycle = 1000 a = np.zeros((num_cycle, 2), dtype=complex) diff --git a/ref/simple_anim.py b/ref/simple_anim.py index 59552cd..39c98a0 100644 --- a/ref/simple_anim.py +++ b/ref/simple_anim.py @@ -11,22 +11,23 @@ import matplotlib.animation as animation fig, ax = plt.subplots() -x = np.arange(0, 2*np.pi, 0.01) +x = np.arange(0, 2 * np.pi, 0.01) line, = ax.plot(x, np.sin(x)) def init(): # only required for blitting to give a clean slate. line.set_ydata([np.nan] * len(x)) - return line, + return (line,) def animate(i): line.set_ydata(np.sin(x + i / 100)) # update the data. - return line, + return (line,) ani = animation.FuncAnimation( - fig, animate, init_func=init, interval=2, blit=True, save_count=50) + fig, animate, init_func=init, interval=2, blit=True, save_count=50 +) # To save the animation, use e.g. # diff --git a/ref/strip_chart.py b/ref/strip_chart.py index 8e9bf2d..11c50fc 100644 --- a/ref/strip_chart.py +++ b/ref/strip_chart.py @@ -21,7 +21,7 @@ class Scope(object): self.ydata = [0] self.line = Line2D(self.tdata, self.ydata) self.ax.add_line(self.line) - self.ax.set_ylim(-.1, 1.1) + self.ax.set_ylim(-0.1, 1.1) self.ax.set_xlim(0, self.maxt) def update(self, y): @@ -36,18 +36,19 @@ class Scope(object): self.tdata.append(t) self.ydata.append(y) self.line.set_data(self.tdata, self.ydata) - return self.line, + return (self.line,) def emitter(p=0.03): - 'return a random value with probability p, else 0' + "return a random value with probability p, else 0" while True: v = np.random.rand(1) if v > p: - yield 0. + yield 0.0 else: yield np.random.rand(1) + # Fixing random state for reproducibility np.random.seed(19680801) @@ -56,7 +57,6 @@ fig, ax = plt.subplots() scope = Scope(ax) # pass a generator in "emitter" to produce data for the update func -ani = animation.FuncAnimation(fig, scope.update, emitter, interval=10, - blit=True) +ani = animation.FuncAnimation(fig, scope.update, emitter, interval=10, blit=True) plt.show() diff --git a/split_step_fourier_method.py b/split_step_fourier_method.py index 4435d86..eedff4b 100644 --- a/split_step_fourier_method.py +++ b/split_step_fourier_method.py @@ -12,58 +12,57 @@ import matplotlib.pyplot as plt import time # ---Specify input parameters -distance = 150. # Enter fiber length (in units of L_c)= -# Normalized 2nd-dispersion: kappa=beta2*f^2*L/2): +distance = 150.0 # Enter fiber length (in units of L_c)= +# Normalized 2nd-dispersion: kappa=beta2*f^2*L/2): # +ve for normal,-ve for anomalous*) kappa = -0.001 -sigma = 0. # Normalized 3rd-dispersion: sigma=beta3*f^3*L/6 -G = 1. # small signal gain of Ramam Amp: G=g*L -Is = 1. # gain saturation parameter +sigma = 0.0 # Normalized 3rd-dispersion: sigma=beta3*f^3*L/6 +G = 1.0 # small signal gain of Ramam Amp: G=g*L +Is = 1.0 # gain saturation parameter alpha = 0.4 # Normalized fiber amplitude absorption coeff: alpha=l*L # Nonlinear parameter n=') # sqrt(L_D/L_NL)=sqrt(gamma*P0*T0^2/|beta2|) or QT: n=kappa^0.5 -n = 2. ** 0.5 +n = 2.0 ** 0.5 # ---Specify filter parameters -bdwidth = 2. * np.pi * 6. -delta = 2. * np.pi * 0.5 +bdwidth = 2.0 * np.pi * 6.0 +delta = 2.0 * np.pi * 0.5 a = np.log(np.sqrt(0.95)) perta = 0.3 pertfsr = 0.17 T = 0.2 t = np.sqrt(T) -r = 1.j * np.sqrt(1. - T) +r = 1.0j * np.sqrt(1.0 - T) # ---Specify input parameters -mshape = -1. # m=0 for sech,m>0 for super-Gaussian= -chirp0 = 0. # % input pulse chirp (default value) +mshape = -1.0 # m=0 for sech,m>0 for super-Gaussian= +chirp0 = 0.0 # % input pulse chirp (default value) # P = 1/(gamma*L); (P is the ref peak power); -# uu = A/sqrt(P); +# uu = A/sqrt(P); # z = z0/L_c; (z0 is the real length, L_c is the cavity length); # tau = f*t; (t is the time of reference traveling frame); # ---set simulation parameters nt = 2 ** 13 # % FFT points (powers of 2) -Tmax = 100. # (half) window size +Tmax = 100.0 # (half) window size stepno = 1 * round(20 * distance * n ** 2) # No.of z steps to dz = distance / stepno # step size in z -dtau = (2. * Tmax) / nt # step size in tau +dtau = (2.0 * Tmax) / nt # step size in tau -Twin = 5. -fmax = (1. / (2. * Tmax)) * nt / 2. -fwin = 5. +Twin = 5.0 +fmax = (1.0 / (2.0 * Tmax)) * nt / 2.0 +fwin = 5.0 filterz = 0.5 plotz = 5 # ---tau and omega arrays -tau = np.arange(-nt / 2., nt / 2.) * dtau # temporal grid +tau = np.arange(-nt / 2.0, nt / 2.0) * dtau # temporal grid # [(0:nt/2-1) (-nt/2:-1)] -omega = (np.pi / Tmax) * \ - np.append(np.arange(0.0, nt / 2.), np.arange(-nt / 2., 0.0)) +omega = (np.pi / Tmax) * np.append(np.arange(0.0, nt / 2.0), np.arange(-nt / 2.0, 0.0)) # frequency grid delaytau = dtau * np.arange(-round(Twin / dtau), round(Twin / dtau) + 1) @@ -71,21 +70,22 @@ delaytau = dtau * np.arange(-round(Twin / dtau), round(Twin / dtau) + 1) # Input Field profile if mshape == 0: # ;% soliton - uu = np.exp(-0.5j * chirp0 * tau ** 2.) / np.cosh(tau) + uu = np.exp(-0.5j * chirp0 * tau ** 2.0) / np.cosh(tau) elif mshape > 0: # super-Gaussian - uu = np.exp(-0.5 * (1. + 1.j * chirp0) * tau ** (2. * mshape)) + uu = np.exp(-0.5 * (1.0 + 1.0j * chirp0) * tau ** (2.0 * mshape)) else: # White noise - uu = (np.random.randn(nt) + 1.j * np.random.randn(nt)) * np.sqrt(0.5) + uu = (np.random.randn(nt) + 1.0j * np.random.randn(nt)) * np.sqrt(0.5) # temp = np.fft.fftshift(np.fft.ifft(uu) * (nt * dtau) / np.sqrt(2. * np.pi)) tempomega = np.fft.fftshift(omega) # ---store dispersive phase shifts to speedup code # % nonlinear phase factor -dispersion = np.exp((-alpha + 1.j * kappa * omega ** 2. + - 1.j * sigma * omega ** 3.) * dz) +dispersion = np.exp( + (-alpha + 1.0j * kappa * omega ** 2.0 + 1.0j * sigma * omega ** 3.0) * dz +) # comb filter type # original comb filter + BPF @@ -93,23 +93,27 @@ dispersion = np.exp((-alpha + 1.j * kappa * omega ** 2. + # (1 - r ** 2 * np.exp(-1.j * (omega + delta) + a)) # perturbated comb filter + BPF -filtert = np.exp(-omega ** 2. / bdwidth ** 2. - - perta * np.sin(0.5 * omega / pertfsr) ** 2) * \ - (t ** 2) / (1.0 - r ** 2 * np.exp(-1.j * (omega + delta) + a)) +filtert = ( + np.exp(-omega ** 2.0 / bdwidth ** 2.0 - perta * np.sin(0.5 * omega / pertfsr) ** 2) + * (t ** 2) + / (1.0 - r ** 2 * np.exp(-1.0j * (omega + delta) + a)) +) fig1 = plt.figure() -plt.plot(tempomega / (2. * np.pi), - np.fft.fftshift(10. * np.log10(np.abs(filtert) ** 2.))) +plt.plot( + tempomega / (2.0 * np.pi), np.fft.fftshift(10.0 * np.log10(np.abs(filtert) ** 2.0)) +) plt.title("Perturbated comb filter + BPF") plt.xlim(-fwin, fwin) plt.xlim(-fwin, fwin) -plt.ylim(-30., 10.) +plt.ylim(-30.0, 10.0) plt.show() # %*********[Beginning of MAIN Loop]*********** # % scheme:1/2N\[Rule]D\[Rule]1/2N;first half step nonlinear -temp = uu * np.exp((1.j * np.abs(uu) ** 2. + - G / (1.0 + np.abs(uu) ** 2. / Is)) * dz / 2.) +temp = uu * np.exp( + (1.0j * np.abs(uu) ** 2.0 + G / (1.0 + np.abs(uu) ** 2.0 / Is)) * dz / 2.0 +) # % note hhz/2 start_time = time.time() @@ -136,7 +140,9 @@ for i in range(stepno): ftemp = np.fft.ifft(temp) * dispersion uu = np.fft.fft(ftemp) - temp = uu * np.exp((1.j * np.abs(uu) ** 2. + G / (1.0 + np.abs(uu) ** 2 / Is)) * dz) + temp = uu * np.exp( + (1.0j * np.abs(uu) ** 2.0 + G / (1.0 + np.abs(uu) ** 2 / Is)) * dz + ) z = z + dz if round((z % plotz) / dz) == 0 or round(((z % plotz) - plotz) / dz) == 0: @@ -144,7 +150,7 @@ for i in range(stepno): print("Z: " + str(z)) # fig2.suptitle("i = " + str(i) + ", z = " + str(z) + " Time: " + str(time_used)) - line1.set_data(tau, np.abs(temp) ** 2.) + line1.set_data(tau, np.abs(temp) ** 2.0) ax1.relim() ax1.autoscale_view(True, True, True) ax1.set_xlim([-Twin, Twin]) @@ -152,7 +158,9 @@ for i in range(stepno): ftemp0 = np.fft.fftshift(ftemp * (nt * dtau) / np.sqrt(2 * np.pi)) - line2.set_data(tempomega / (2. * np.pi), 10. * np.log10(np.abs(ftemp0) ** 2.)) + line2.set_data( + tempomega / (2.0 * np.pi), 10.0 * np.log10(np.abs(ftemp0) ** 2.0) + ) # ax2.relim() ax2.autoscale_view(True, True, True) @@ -165,14 +173,20 @@ for i in range(stepno): ax3.set_xlim([-Tmax, Tmax]) ax3.set_title("Time domain (Full Scale)") - line4.set_data(tempomega / (2. * np.pi), 10. * np.log10(np.abs(ftemp0) ** 2.)) + line4.set_data( + tempomega / (2.0 * np.pi), 10.0 * np.log10(np.abs(ftemp0) ** 2.0) + ) ax4.relim() ax4.autoscale_view(True, True, True) ax4.set_xlim([-fmax, fmax]) ax4.set_title("Spectrum (Full Scale)") autocorr0 = np.fft.fftshift( - np.fft.ifft(np.fft.fft(np.abs(temp) ** 2) * np.conjugate(np.fft.fft(np.abs(temp) ** 2)))) + np.fft.ifft( + np.fft.fft(np.abs(temp) ** 2) + * np.conjugate(np.fft.fft(np.abs(temp) ** 2)) + ) + ) line5.set_data(tau, np.abs(autocorr0) / max(np.abs(autocorr0))) ax5.relim() @@ -187,7 +201,23 @@ plt.show() # Exporting results fname = "result" # file name -np.savetxt(fname + "_time.csv", (tau, np.real(uu), np.imag(uu), np.abs(uu) ** 2), delimiter=",") -np.savetxt(fname + "_freq.csv", (tempomega / (2. * np.pi), np.real(temp), np.imag(temp), - np.abs(temp) ** 2, np.fft.fftshift(np.abs(filtert) ** 2.)), delimiter=",") -np.savetxt(fname + "_autocorr.csv", (tau, np.abs(autocorr0), np.abs(autocorr0) / max(np.abs(autocorr0))), delimiter=",") +np.savetxt( + fname + "_time.csv", (tau, np.real(uu), np.imag(uu), np.abs(uu) ** 2), delimiter="," +) +np.savetxt( + fname + "_freq.csv", + ( + tempomega / (2.0 * np.pi), + np.real(temp), + np.imag(temp), + np.abs(temp) ** 2, + np.fft.fftshift(np.abs(filtert) ** 2.0), + ), + delimiter=",", +) +np.savetxt( + fname + "_autocorr.csv", + (tau, np.abs(autocorr0), np.abs(autocorr0) / max(np.abs(autocorr0))), + delimiter=",", +) + diff --git a/split_step_fourier_method_v0.py b/split_step_fourier_method_v0.py index 7270a7c..f033651 100644 --- a/split_step_fourier_method_v0.py +++ b/split_step_fourier_method_v0.py @@ -12,63 +12,62 @@ import matplotlib.pyplot as plt import time # ---Specify input parameters -distance = 150. # Enter fiber length (in units of L_c)= -# Normalized 2nd-dispersion: kappa=beta2*f^2*L/2): +distance = 150.0 # Enter fiber length (in units of L_c)= +# Normalized 2nd-dispersion: kappa=beta2*f^2*L/2): # +ve for normal,-ve for anomalous*) -kappa = -0.001 -sigma = 0. # Normalized 3rd-dispersion: sigma=beta3*f^3*L/6 -G = 1. # small signal gain of Ramam Amp: G=g*L -Is = 1. # gain saturation parameter +kappa = -0.001 +sigma = 0.0 # Normalized 3rd-dispersion: sigma=beta3*f^3*L/6 +G = 1.0 # small signal gain of Ramam Amp: G=g*L +Is = 1.0 # gain saturation parameter alpha = 0.4 # Normalized fiber amplitude absorption coeff: alpha=l*L # Nonlinear parameter n=') # sqrt(L_D/L_NL)=sqrt(gamma*P0*T0^2/|beta2|) or QT: n=kappa^0.5 -n = 2. ** 0.5 +n = 2.0 ** 0.5 # ---Specify filter parameters -bdwidth = 2. * np.pi * 6. -delta = 2. * np.pi * 0.5 +bdwidth = 2.0 * np.pi * 6.0 +delta = 2.0 * np.pi * 0.5 a = np.log(np.sqrt(0.95)) perta = 0.3 pertfsr = 0.17 T = 0.2 t = np.sqrt(T) -r = 1.j * np.sqrt(1. - T) +r = 1.0j * np.sqrt(1.0 - T) # ---Specify input parameters -mshape = -1. # m=0 for sech,m>0 for super-Gaussian= -chirp0 = 0. # % input pulse chirp (default value) +mshape = -1.0 # m=0 for sech,m>0 for super-Gaussian= +chirp0 = 0.0 # % input pulse chirp (default value) -# P = 1/(gamma*L); (P is the ref peak power); -# uu = A/sqrt(P); +# P = 1/(gamma*L); (P is the ref peak power); +# uu = A/sqrt(P); # z = z0/L_c; (z0 is the real length, L_c is the cavity length); # tau = f*t; (t is the time of reference traveling frame); # ---set simulation parameters nt = 2 ** 13 # % FFT points (powers of 2) -Tmax = 100. # (half) window size +Tmax = 100.0 # (half) window size stepno = 1 * round(20 * distance * n ** 2) # No.of z steps to dz = distance / stepno # step size in z -dtau = (2. * Tmax) / nt # step size in tau +dtau = (2.0 * Tmax) / nt # step size in tau -Twin = 5. -fmax = (1. / (2. * Tmax)) * nt / 2. -fwin = 5. +Twin = 5.0 +fmax = (1.0 / (2.0 * Tmax)) * nt / 2.0 +fwin = 5.0 filterz = 0.5 plotz = 5 # ---tau and omega arrays -tau = np.arange(-nt / 2., nt / 2.) * dtau # temporal grid +tau = np.arange(-nt / 2.0, nt / 2.0) * dtau # temporal grid # [(0:nt/2-1) (-nt/2:-1)] -omega = (np.pi / Tmax) * \ - np.append(np.arange(0.0 , nt / 2.), np.arange(-nt / 2., 0.0)) +omega = (np.pi / Tmax) * np.append(np.arange(0.0, nt / 2.0), np.arange(-nt / 2.0, 0.0)) # frequency grid @@ -78,23 +77,24 @@ delaytau = dtau * np.arange(-round(Twin / dtau), round(Twin / dtau) + 1) # Input Field profile if mshape == 0: # ;% soliton - uu = np.exp(-0.5j * chirp0 * tau ** 2.) / np.cosh(tau) + uu = np.exp(-0.5j * chirp0 * tau ** 2.0) / np.cosh(tau) elif mshape > 0: # super-Gaussian - uu = np.exp(-0.5 * (1. + 1.j * chirp0) * tau ** (2. * mshape)) + uu = np.exp(-0.5 * (1.0 + 1.0j * chirp0) * tau ** (2.0 * mshape)) else: # White noise - uu = (np.random.randn(nt) + 1.j * np.random.randn(nt)) * np.sqrt(0.5) + uu = (np.random.randn(nt) + 1.0j * np.random.randn(nt)) * np.sqrt(0.5) -temp = np.fft.fftshift(np.fft.ifft(uu) * (nt * dtau) / np.sqrt(2.* np.pi)) +temp = np.fft.fftshift(np.fft.ifft(uu) * (nt * dtau) / np.sqrt(2.0 * np.pi)) tempomega = np.fft.fftshift(omega) # ---store dispersive phase shifts to speedup code # % nonlinear phase factor -dispersion = np.exp((-alpha + 1.j * kappa * omega **2. + \ - 1.j * sigma * omega ** 3.) * dz) +dispersion = np.exp( + (-alpha + 1.0j * kappa * omega ** 2.0 + 1.0j * sigma * omega ** 3.0) * dz +) # comb filter type # original comb filter + BPF @@ -102,22 +102,26 @@ dispersion = np.exp((-alpha + 1.j * kappa * omega **2. + \ # (1 - r ** 2 * np.exp(-1.j * (omega + delta) + a)) # perturbated comb filter + BPF -filtert = np.exp(-omega ** 2. / bdwidth ** 2. - \ - perta * np.sin(0.5 * omega / pertfsr) ** 2) * \ - (t ** 2) / (1.0 - r ** 2 * np.exp(-1.j*(omega + delta) + a)) +filtert = ( + np.exp(-omega ** 2.0 / bdwidth ** 2.0 - perta * np.sin(0.5 * omega / pertfsr) ** 2) + * (t ** 2) + / (1.0 - r ** 2 * np.exp(-1.0j * (omega + delta) + a)) +) plt.figure() -plt.plot(tempomega / (2. * np.pi), - np.fft.fftshift(10. * np.log10(np.abs(filtert) ** 2.))) +plt.plot( + tempomega / (2.0 * np.pi), np.fft.fftshift(10.0 * np.log10(np.abs(filtert) ** 2.0)) +) plt.xlim(-fwin, fwin) plt.xlim(-fwin, fwin) -plt.ylim(-30., 10.) +plt.ylim(-30.0, 10.0) plt.show() # %*********[Beginning of MAIN Loop]*********** # % scheme:1/2N\[Rule]D\[Rule]1/2N;first half step nonlinear -temp = uu * np.exp((1.j * np.abs(uu) ** 2. + - G / (1.0 + np.abs(uu) ** 2. / Is )) * dz / 2.) +temp = uu * np.exp( + (1.0j * np.abs(uu) ** 2.0 + G / (1.0 + np.abs(uu) ** 2.0 / Is)) * dz / 2.0 +) # % note hhz/2 start_time = time.time() @@ -131,13 +135,15 @@ z = 0 plt.ion() fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(3, 2) for i in range(stepno): - if round((z % 1 - filterz)/dz) == 0: + if round((z % 1 - filterz) / dz) == 0: ftemp = np.fft.ifft(temp) * filtert * dispersion else: ftemp = np.fft.ifft(temp) * dispersion uu = np.fft.fft(ftemp) - temp = uu*np.exp((1.j * np.abs(uu)**2. + G / (1.0 + np.abs(uu)**2 / Is)) * dz) + temp = uu * np.exp( + (1.0j * np.abs(uu) ** 2.0 + G / (1.0 + np.abs(uu) ** 2 / Is)) * dz + ) z = z + dz if round((z % plotz) / dz) == 0 or round(((z % plotz) - plotz) / dz) == 0: @@ -145,29 +151,33 @@ for i in range(stepno): print(i) ax1.clear() - ax1.plot(tau, np.abs(temp)**2.) + ax1.plot(tau, np.abs(temp) ** 2.0) ax1.set_xlim([-Twin, Twin]) ax1.set_title("i = " + str(i) + ", z = " + str(z)) ftemp0 = np.fft.fftshift(ftemp * (nt * dtau) / np.sqrt(2 * np.pi)) ax2.clear() - ax2.plot(tempomega / (2. * np.pi), 10. * np.log10(np.abs(ftemp0)**2.)) + ax2.plot(tempomega / (2.0 * np.pi), 10.0 * np.log10(np.abs(ftemp0) ** 2.0)) ax2.set_xlim([-fwin, fwin]) ax2.set_title(" Time = " + str(time_used)) ax3.clear() - ax3.plot(tau, np.abs(temp)**2) + ax3.plot(tau, np.abs(temp) ** 2) ax3.set_xlim([-Tmax, Tmax]) ax3.set_title("i = " + str(i) + ", z = " + str(z)) ax4.clear() - ax4.plot(tempomega / (2. * np.pi), 10. * np.log10(np.abs(ftemp0)**2.)) + ax4.plot(tempomega / (2.0 * np.pi), 10.0 * np.log10(np.abs(ftemp0) ** 2.0)) ax4.set_xlim([-fmax, fmax]) ax4.set_title(" Time = " + str(time_used)) autocorr0 = np.fft.fftshift( - np.fft.ifft(np.fft.fft(np.abs(temp)**2) * np.conjugate(np.fft.fft(np.abs(temp)**2)))) + np.fft.ifft( + np.fft.fft(np.abs(temp) ** 2) + * np.conjugate(np.fft.fft(np.abs(temp) ** 2)) + ) + ) ax5.clear() ax5.plot(tau, autocorr0 / max(autocorr0)) diff --git a/tmp.py b/tmp.py index d480db8..27132d3 100644 --- a/tmp.py +++ b/tmp.py @@ -1 +1,2 @@ -print(1.3%1.0) \ No newline at end of file +print(1.3 % 1.0) +