first commit
This commit is contained in:
commit
da45f5edf4
BIN
1007008950‐wong chi yan‐201308‐phd‐fulltext.pdf
Executable file
BIN
1007008950‐wong chi yan‐201308‐phd‐fulltext.pdf
Executable file
Binary file not shown.
BIN
1007008950‐wong chi yan‐201308‐phd‐thesis (updated).docx
Executable file
BIN
1007008950‐wong chi yan‐201308‐phd‐thesis (updated).docx
Executable file
Binary file not shown.
210
mathematica_code.txt
Normal file
210
mathematica_code.txt
Normal file
@ -0,0 +1,210 @@
|
||||
In this appendix, we show how to use the model based on Schröder et al. to simulate the DFWM mode-locked fiber laser. The following code is based on [65] and written in Mathematica 9.0:
|
||||
(* This code solves the NLS equation with the split-step Fourier method
|
||||
based on Govind P. Agrawal in March 2005 for the NLFO book
|
||||
*)
|
||||
|
||||
ClearAll["Global`*"]
|
||||
|
||||
(*---Specify input parameters*)
|
||||
distance = 150.;(*Enter fiber length (in units of L_c)=*)
|
||||
kappa = -0.001 ;(*Normalized 2nd-dispersion: kappa=beta2*f^2*L/2): \
|
||||
+ve for normal,-ve for anomalous*)
|
||||
sigma = 0.; (*Normalized 3rd-dispersion: sigma=beta3*f^3*L/6 *)
|
||||
G = 1.0;(*small signal gain of Ramam Amp: G=g*L *)
|
||||
Is = 1.; (*gain saturation parameter*)
|
||||
alpha = 0.4; (*Normalized fiber amplitude absorption coeff: alpha=l*L*)
|
||||
|
||||
|
||||
n = 2.^0.5;(*Nonlinear parameter n=') \
|
||||
sqrt(L_D/L_NL)=sqrt(gamma*P0*T0^2/|beta2|) or QT: n=kappa^0.5*)
|
||||
|
||||
(*---Specify filter parameters*)
|
||||
bdwidth = 2. Pi*6.;
|
||||
delta = 2. Pi*0.5;
|
||||
a = Log[Sqrt[0.95]];
|
||||
perta = 0.3;
|
||||
pertfsr = 0.17;
|
||||
T = 0.2;
|
||||
t = Sqrt[T];
|
||||
r = I*Sqrt[1 - T];
|
||||
|
||||
(*---Specify input parameters*)
|
||||
mshape = -1.;(*m=0 for sech,m>0 for super-Gaussian=*)
|
||||
chirp0 = 0. ;(*% input pulse chirp (default value)*)
|
||||
|
||||
(*
|
||||
P = 1/(gamma*L); (P is the ref peak power);
|
||||
uu = A/sqrt(P);
|
||||
z = z0/L_c; (z0 is the real length, L_c is the cavity length);
|
||||
tau = f*t; (t is the time of reference traveling frame);
|
||||
*)
|
||||
|
||||
(*---set simulation parameters*)
|
||||
nt = 2^13; (*% FFT points (powers of 2)*)
|
||||
Tmax = 100.; (*(half) window size*)
|
||||
stepno = 1*Round[20*distance*n^2];(*No.of z steps to*)
|
||||
dz = distance/stepno;(*step size in z*)
|
||||
dtau = (2.*Tmax)/nt ;(*step size in tau*)
|
||||
|
||||
Twin = 5.;
|
||||
fmax = (1./(2. Tmax))*nt/2.;
|
||||
fwin = 5.;
|
||||
|
||||
filterz = 0.5;
|
||||
plotz = 5;
|
||||
|
||||
(*---tau and omega arrays*)
|
||||
tau = N[Range[-nt/2, nt/2 - 1]]*dtau ;(*temporal grid*)
|
||||
omega = (1. \[Pi]/Tmax)*
|
||||
N[Join[Range[0, nt/2 - 1],
|
||||
Range[-nt/2, -1]]];(*[(0:nt/2-1) (-nt/2:-1)]*)
|
||||
(*frequency grid*)
|
||||
delaytau = dtau*Range[-Round[Twin/dtau], Round[Twin/dtau]];
|
||||
|
||||
|
||||
|
||||
(*Input Field profile*)
|
||||
If[mshape == 0,
|
||||
(*;% soliton*)
|
||||
uu = Sech[tau]*Exp[-0.5 I*chirp0*tau^2.],
|
||||
If[ mshape > 0 ,
|
||||
(* super-Gaussian*)
|
||||
uu = Exp[-0.5*(1. + 1. I*chirp0)*tau^(2.*mshape)],
|
||||
(*White noise*)
|
||||
uu = (RandomReal[NormalDistribution[0, 1], nt] +
|
||||
I*RandomReal[NormalDistribution[0, 1], nt])*Sqrt[1./2.]
|
||||
]
|
||||
];
|
||||
|
||||
temp = RotateRight[
|
||||
InverseFourier[uu, FourierParameters -> {1, -1}]*(nt*dtau)/
|
||||
Sqrt[2.*Pi], nt/2.];
|
||||
tempomega = RotateRight[omega, nt/2];
|
||||
|
||||
|
||||
(*---store dispersive phase shifts to speedup code*)
|
||||
dispersion =
|
||||
Exp[(-alpha + I*kappa*omega^2. + I*sigma*omega^3.)*
|
||||
dz];(*% nonlinear phase factor*)
|
||||
(*comb filter type*)
|
||||
(*original comb filter + BPF*)
|
||||
(*filtert= \
|
||||
Exp[-omega^2./bdwidth^2.]*(t^2)/(1-r^2*Exp[-I*(omega+delta)+a]);*)
|
||||
(*perturbated comb filter + BPF*)
|
||||
filtert = Exp[-omega^2./bdwidth^2. - perta*Sin[0.5
|
||||
*omega/pertfsr]^2]*(t^2)/(1 -
|
||||
r^2*Exp[-I*(omega + delta) + a]);
|
||||
|
||||
p6 = ListLinePlot[
|
||||
Transpose[{tempomega/(2. Pi),
|
||||
RotateRight[10.*Log10[Abs[filtert]^2], nt/2]}],
|
||||
PlotRange -> {{-fwin, fwin}, {-30, 10}}, Frame -> True,
|
||||
ImageSize -> Automatic];
|
||||
|
||||
(*%*********[Beginning of MAIN Loop]***********
|
||||
% scheme:1/2N\[Rule]D\[Rule]1/2N;first half step nonlinear*)
|
||||
temp = uu*
|
||||
Exp[(I*Abs[uu]^2. + G/(1.0 + Abs[uu]^2./Is))*dz/2.];(*% note hhz/2*)
|
||||
|
||||
starttime = SessionTime[];
|
||||
timeused = SessionTime[] - starttime;
|
||||
z = 0;
|
||||
|
||||
Monitor[ (* Realtime monitoring the simulation progress*)
|
||||
For[ i = 1, i <= stepno, i++,
|
||||
If[Round[(Mod[z, 1] - filterz )/dz] == 0 ,
|
||||
ftemp =
|
||||
InverseFourier[temp, FourierParameters -> {1, -1}]*filtert*
|
||||
dispersion;
|
||||
ftemp =
|
||||
InverseFourier[temp, FourierParameters -> {1, -1}]*dispersion;
|
||||
]
|
||||
uu = Fourier[ftemp, FourierParameters -> {1, -1}];
|
||||
temp = uu*Exp[(I*Abs[uu]^2. + G/(1.0 + Abs[uu]^2./Is))*dz];
|
||||
z = z + dz;
|
||||
If[Round[Mod[z, plotz ]/dz] == 0 ||
|
||||
Round[(Mod[z, plotz ] - plotz )/dz] == 0 ,
|
||||
timeused = SessionTime[] - starttime;
|
||||
p1 = ListLinePlot[Transpose[{tau, Abs[temp]^2.}],
|
||||
PlotRange -> {{-Twin, Twin}, All}, Frame -> True,
|
||||
FrameLabel -> {{Null, Null}, {Null,
|
||||
StringJoin[{"i = ", ToString[i], ", z = ", ToString[z]}]}}
|
||||
];
|
||||
ftemp0 = RotateRight[ftemp (nt*dtau)/Sqrt[2*Pi], nt/2];
|
||||
p2 = ListLinePlot[
|
||||
Transpose[{tempomega/(2. Pi), 10.*Log10[Abs[ftemp0]^2.]}],
|
||||
PlotRange -> {{-fwin, fwin}, All}, Frame -> True,
|
||||
FrameLabel -> {{Null, Null}, {Null,
|
||||
StringJoin[{" Time = ", ToString[timeused]}]}}
|
||||
];
|
||||
p3 = ListLinePlot[Transpose[{tau, Abs[temp]^2}],
|
||||
PlotRange -> {{-Tmax, Tmax}, All}, Frame -> True,
|
||||
FrameLabel -> {{Null, Null}, {Null,
|
||||
StringJoin[{"i = ", ToString[i], ", z = ", ToString[z]}]}}
|
||||
];
|
||||
p4 = ListLinePlot[
|
||||
Transpose[{tempomega/(2. Pi), 10.*Log10[Abs[ftemp0]^2.]}],
|
||||
PlotRange -> {{-fmax, fmax}, All}, Frame -> True,
|
||||
FrameLabel -> {{Null, Null}, {Null,
|
||||
StringJoin[{" Time = ", ToString[timeused]}]}}
|
||||
];
|
||||
autocorr0 =
|
||||
RotateRight[
|
||||
InverseFourier[
|
||||
Fourier[Abs[temp]^2]*Conjugate[Fourier[Abs[temp]^2]]], nt/2];
|
||||
p5 = ListLinePlot[Transpose[{tau, autocorr0/Max[autocorr0]}],
|
||||
PlotRange -> {{-Twin, Twin}, All}, Frame -> True];
|
||||
p = GraphicsGrid[{{p1, p2}, {p3, p4}, {p5, p6}}, ImageSize -> Full]
|
||||
];
|
||||
],
|
||||
p
|
||||
]
|
||||
|
||||
uu = temp*
|
||||
Exp[(I*Abs[uu]^2. + G/(1.0 + Abs[uu]^2./Is))*
|
||||
dz/2.];(*% Final field*)
|
||||
temp = RotateRight[
|
||||
InverseFourier[uu, FourierParameters -> {1, -1}]*(nt*dtau)/
|
||||
Sqrt[2*Pi], nt/2];
|
||||
|
||||
(*%Final spectrum*)
|
||||
(*%***************[End of MAIN Loop]***************)
|
||||
p1 = ListLinePlot[Transpose[{tau, Abs[uu]^2}],
|
||||
PlotRange -> {{-Twin, Twin}, All}, Frame -> True,
|
||||
FrameLabel -> {{Null, Null}, {Null,
|
||||
StringJoin[{"i = ", ToString[i], ", z = ", ToString[z]}]}}
|
||||
];
|
||||
p2 = ListLinePlot[
|
||||
Transpose[{tempomega/(2. Pi), 10.*Log10[Abs[temp]^2.]}],
|
||||
PlotRange -> {{-fwin, fwin}, All}, Frame -> True,
|
||||
FrameLabel -> {{Null, Null}, {Null,
|
||||
StringJoin[{" Time = ", ToString[timeused]}]}}
|
||||
];
|
||||
p3 = ListLinePlot[Transpose[{tau, Abs[uu]^2}],
|
||||
PlotRange -> {{-Tmax, Tmax}, All}, Frame -> True,
|
||||
FrameLabel -> {{Null, Null}, {Null,
|
||||
StringJoin[{"i = ", ToString[i], ", z = ", ToString[z]}]}}
|
||||
];
|
||||
p4 = ListLinePlot[
|
||||
Transpose[{tempomega/(2. Pi), 10.*Log10[Abs[temp]^2.]}],
|
||||
PlotRange -> {{-fmax, fmax}, All}, Frame -> True,
|
||||
FrameLabel -> {{Null, Null}, {Null,
|
||||
StringJoin[{" Time = ", ToString[timeused]}]}}
|
||||
];
|
||||
autocorr0 =
|
||||
RotateRight[
|
||||
InverseFourier[Fourier[Abs[uu]^2]*Conjugate[Fourier[Abs[uu]^2]]],
|
||||
nt/2];
|
||||
p5 = ListLinePlot[Transpose[{tau, autocorr0/Max[autocorr0]}],
|
||||
PlotRange -> {{-Twin, Twin}, All}, Frame -> True];
|
||||
p = GraphicsGrid[{{p1, p2}, {p3, p4}, {p5, p6}}, ImageSize -> Full]
|
||||
|
||||
(*Exporting results*)
|
||||
fname = "2nd_01(0.18)"; (*file name*)
|
||||
Export[StringJoin[{fname , "_time.dat"}],
|
||||
Transpose[{tau, Re[uu], Im[uu], Abs[uu]^2}]];
|
||||
Export[StringJoin[{fname , "_freq.dat"}],
|
||||
Transpose[{tempomega/(2. Pi), Re[temp], Im[temp], Abs[temp]^2,
|
||||
RotateRight[Abs[filtert]^2, nt/2]}]];
|
||||
Export[StringJoin[{fname , "_autocorr.dat"}],
|
||||
Transpose[{tau, autocorr0, autocorr0/Max[autocorr0]}]];
|
253
microring_dynamics.ipynb
Normal file
253
microring_dynamics.ipynb
Normal file
File diff suppressed because one or more lines are too long
21
microring_dynamics.py
Normal file
21
microring_dynamics.py
Normal file
@ -0,0 +1,21 @@
|
||||
import numpy as np
|
||||
|
||||
a1 = 1.0 + 0.0j
|
||||
a2 = 0.0 + 0.0j
|
||||
T = 0.9
|
||||
K = 0.1
|
||||
t = np.sqrt(T) + 0.0j
|
||||
k = 0.0 - 1j * np.sqrt(K)
|
||||
|
||||
Coupler = np.array([[t, k],
|
||||
[k.conjugate(), -t.conjugate()]])
|
||||
|
||||
num_cycle = 1000
|
||||
a = np.zeros((num_cycle, 2), dtype=complex)
|
||||
b = np.zeros((num_cycle, 2), dtype=complex)
|
||||
|
||||
a[0, 0] = a1
|
||||
a[0, 1] = a2
|
||||
|
||||
for n in range(num_cycle):
|
||||
pass
|
287
microring_dynamics_v2.ipynb
Normal file
287
microring_dynamics_v2.ipynb
Normal file
File diff suppressed because one or more lines are too long
456
notebook.tex
Normal file
456
notebook.tex
Normal file
@ -0,0 +1,456 @@
|
||||
|
||||
% Default to the notebook output style
|
||||
|
||||
|
||||
|
||||
|
||||
% Inherit from the specified cell style.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\documentclass[11pt]{article}
|
||||
|
||||
|
||||
|
||||
\usepackage[T1]{fontenc}
|
||||
% Nicer default font (+ math font) than Computer Modern for most use cases
|
||||
\usepackage{mathpazo}
|
||||
|
||||
% Basic figure setup, for now with no caption control since it's done
|
||||
% automatically by Pandoc (which extracts  syntax from Markdown).
|
||||
\usepackage{graphicx}
|
||||
% We will generate all images so they have a width \maxwidth. This means
|
||||
% that they will get their normal width if they fit onto the page, but
|
||||
% are scaled down if they would overflow the margins.
|
||||
\makeatletter
|
||||
\def\maxwidth{\ifdim\Gin@nat@width>\linewidth\linewidth
|
||||
\else\Gin@nat@width\fi}
|
||||
\makeatother
|
||||
\let\Oldincludegraphics\includegraphics
|
||||
% Set max figure width to be 80% of text width, for now hardcoded.
|
||||
\renewcommand{\includegraphics}[1]{\Oldincludegraphics[width=.8\maxwidth]{#1}}
|
||||
% Ensure that by default, figures have no caption (until we provide a
|
||||
% proper Figure object with a Caption API and a way to capture that
|
||||
% in the conversion process - todo).
|
||||
\usepackage{caption}
|
||||
\DeclareCaptionLabelFormat{nolabel}{}
|
||||
\captionsetup{labelformat=nolabel}
|
||||
|
||||
\usepackage{adjustbox} % Used to constrain images to a maximum size
|
||||
\usepackage{xcolor} % Allow colors to be defined
|
||||
\usepackage{enumerate} % Needed for markdown enumerations to work
|
||||
\usepackage{geometry} % Used to adjust the document margins
|
||||
\usepackage{amsmath} % Equations
|
||||
\usepackage{amssymb} % Equations
|
||||
\usepackage{textcomp} % defines textquotesingle
|
||||
% Hack from http://tex.stackexchange.com/a/47451/13684:
|
||||
\AtBeginDocument{%
|
||||
\def\PYZsq{\textquotesingle}% Upright quotes in Pygmentized code
|
||||
}
|
||||
\usepackage{upquote} % Upright quotes for verbatim code
|
||||
\usepackage{eurosym} % defines \euro
|
||||
\usepackage[mathletters]{ucs} % Extended unicode (utf-8) support
|
||||
\usepackage[utf8x]{inputenc} % Allow utf-8 characters in the tex document
|
||||
\usepackage{fancyvrb} % verbatim replacement that allows latex
|
||||
\usepackage{grffile} % extends the file name processing of package graphics
|
||||
% to support a larger range
|
||||
% The hyperref package gives us a pdf with properly built
|
||||
% internal navigation ('pdf bookmarks' for the table of contents,
|
||||
% internal cross-reference links, web links for URLs, etc.)
|
||||
\usepackage{hyperref}
|
||||
\usepackage{longtable} % longtable support required by pandoc >1.10
|
||||
\usepackage{booktabs} % table support for pandoc > 1.12.2
|
||||
\usepackage[inline]{enumitem} % IRkernel/repr support (it uses the enumerate* environment)
|
||||
\usepackage[normalem]{ulem} % ulem is needed to support strikethroughs (\sout)
|
||||
% normalem makes italics be italics, not underlines
|
||||
|
||||
|
||||
|
||||
|
||||
% Colors for the hyperref package
|
||||
\definecolor{urlcolor}{rgb}{0,.145,.698}
|
||||
\definecolor{linkcolor}{rgb}{.71,0.21,0.01}
|
||||
\definecolor{citecolor}{rgb}{.12,.54,.11}
|
||||
|
||||
% ANSI colors
|
||||
\definecolor{ansi-black}{HTML}{3E424D}
|
||||
\definecolor{ansi-black-intense}{HTML}{282C36}
|
||||
\definecolor{ansi-red}{HTML}{E75C58}
|
||||
\definecolor{ansi-red-intense}{HTML}{B22B31}
|
||||
\definecolor{ansi-green}{HTML}{00A250}
|
||||
\definecolor{ansi-green-intense}{HTML}{007427}
|
||||
\definecolor{ansi-yellow}{HTML}{DDB62B}
|
||||
\definecolor{ansi-yellow-intense}{HTML}{B27D12}
|
||||
\definecolor{ansi-blue}{HTML}{208FFB}
|
||||
\definecolor{ansi-blue-intense}{HTML}{0065CA}
|
||||
\definecolor{ansi-magenta}{HTML}{D160C4}
|
||||
\definecolor{ansi-magenta-intense}{HTML}{A03196}
|
||||
\definecolor{ansi-cyan}{HTML}{60C6C8}
|
||||
\definecolor{ansi-cyan-intense}{HTML}{258F8F}
|
||||
\definecolor{ansi-white}{HTML}{C5C1B4}
|
||||
\definecolor{ansi-white-intense}{HTML}{A1A6B2}
|
||||
|
||||
% commands and environments needed by pandoc snippets
|
||||
% extracted from the output of `pandoc -s`
|
||||
\providecommand{\tightlist}{%
|
||||
\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
|
||||
\DefineVerbatimEnvironment{Highlighting}{Verbatim}{commandchars=\\\{\}}
|
||||
% Add ',fontsize=\small' for more characters per line
|
||||
\newenvironment{Shaded}{}{}
|
||||
\newcommand{\KeywordTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{{#1}}}}
|
||||
\newcommand{\DataTypeTok}[1]{\textcolor[rgb]{0.56,0.13,0.00}{{#1}}}
|
||||
\newcommand{\DecValTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}}
|
||||
\newcommand{\BaseNTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}}
|
||||
\newcommand{\FloatTok}[1]{\textcolor[rgb]{0.25,0.63,0.44}{{#1}}}
|
||||
\newcommand{\CharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
|
||||
\newcommand{\StringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
|
||||
\newcommand{\CommentTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textit{{#1}}}}
|
||||
\newcommand{\OtherTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{{#1}}}
|
||||
\newcommand{\AlertTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{{#1}}}}
|
||||
\newcommand{\FunctionTok}[1]{\textcolor[rgb]{0.02,0.16,0.49}{{#1}}}
|
||||
\newcommand{\RegionMarkerTok}[1]{{#1}}
|
||||
\newcommand{\ErrorTok}[1]{\textcolor[rgb]{1.00,0.00,0.00}{\textbf{{#1}}}}
|
||||
\newcommand{\NormalTok}[1]{{#1}}
|
||||
|
||||
% Additional commands for more recent versions of Pandoc
|
||||
\newcommand{\ConstantTok}[1]{\textcolor[rgb]{0.53,0.00,0.00}{{#1}}}
|
||||
\newcommand{\SpecialCharTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
|
||||
\newcommand{\VerbatimStringTok}[1]{\textcolor[rgb]{0.25,0.44,0.63}{{#1}}}
|
||||
\newcommand{\SpecialStringTok}[1]{\textcolor[rgb]{0.73,0.40,0.53}{{#1}}}
|
||||
\newcommand{\ImportTok}[1]{{#1}}
|
||||
\newcommand{\DocumentationTok}[1]{\textcolor[rgb]{0.73,0.13,0.13}{\textit{{#1}}}}
|
||||
\newcommand{\AnnotationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
|
||||
\newcommand{\CommentVarTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
|
||||
\newcommand{\VariableTok}[1]{\textcolor[rgb]{0.10,0.09,0.49}{{#1}}}
|
||||
\newcommand{\ControlFlowTok}[1]{\textcolor[rgb]{0.00,0.44,0.13}{\textbf{{#1}}}}
|
||||
\newcommand{\OperatorTok}[1]{\textcolor[rgb]{0.40,0.40,0.40}{{#1}}}
|
||||
\newcommand{\BuiltInTok}[1]{{#1}}
|
||||
\newcommand{\ExtensionTok}[1]{{#1}}
|
||||
\newcommand{\PreprocessorTok}[1]{\textcolor[rgb]{0.74,0.48,0.00}{{#1}}}
|
||||
\newcommand{\AttributeTok}[1]{\textcolor[rgb]{0.49,0.56,0.16}{{#1}}}
|
||||
\newcommand{\InformationTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
|
||||
\newcommand{\WarningTok}[1]{\textcolor[rgb]{0.38,0.63,0.69}{\textbf{\textit{{#1}}}}}
|
||||
|
||||
|
||||
% Define a nice break command that doesn't care if a line doesn't already
|
||||
% exist.
|
||||
\def\br{\hspace*{\fill} \\* }
|
||||
% Math Jax compatability definitions
|
||||
\def\gt{>}
|
||||
\def\lt{<}
|
||||
% Document parameters
|
||||
\title{microring\_dynamics}
|
||||
|
||||
|
||||
|
||||
|
||||
% Pygments definitions
|
||||
|
||||
\makeatletter
|
||||
\def\PY@reset{\let\PY@it=\relax \let\PY@bf=\relax%
|
||||
\let\PY@ul=\relax \let\PY@tc=\relax%
|
||||
\let\PY@bc=\relax \let\PY@ff=\relax}
|
||||
\def\PY@tok#1{\csname PY@tok@#1\endcsname}
|
||||
\def\PY@toks#1+{\ifx\relax#1\empty\else%
|
||||
\PY@tok{#1}\expandafter\PY@toks\fi}
|
||||
\def\PY@do#1{\PY@bc{\PY@tc{\PY@ul{%
|
||||
\PY@it{\PY@bf{\PY@ff{#1}}}}}}}
|
||||
\def\PY#1#2{\PY@reset\PY@toks#1+\relax+\PY@do{#2}}
|
||||
|
||||
\expandafter\def\csname PY@tok@w\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.73,0.73}{##1}}}
|
||||
\expandafter\def\csname PY@tok@c\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
|
||||
\expandafter\def\csname PY@tok@cp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.74,0.48,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@k\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@kp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@kt\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.69,0.00,0.25}{##1}}}
|
||||
\expandafter\def\csname PY@tok@o\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
|
||||
\expandafter\def\csname PY@tok@ow\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.67,0.13,1.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@nb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@nf\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@nc\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@nn\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@ne\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.82,0.25,0.23}{##1}}}
|
||||
\expandafter\def\csname PY@tok@nv\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
|
||||
\expandafter\def\csname PY@tok@no\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.53,0.00,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@nl\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.63,0.63,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@ni\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.60,0.60,0.60}{##1}}}
|
||||
\expandafter\def\csname PY@tok@na\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.49,0.56,0.16}{##1}}}
|
||||
\expandafter\def\csname PY@tok@nt\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@nd\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.67,0.13,1.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@s\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
|
||||
\expandafter\def\csname PY@tok@sd\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
|
||||
\expandafter\def\csname PY@tok@si\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.53}{##1}}}
|
||||
\expandafter\def\csname PY@tok@se\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.13}{##1}}}
|
||||
\expandafter\def\csname PY@tok@sr\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.40,0.53}{##1}}}
|
||||
\expandafter\def\csname PY@tok@ss\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
|
||||
\expandafter\def\csname PY@tok@sx\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@m\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
|
||||
\expandafter\def\csname PY@tok@gh\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,0.50}{##1}}}
|
||||
\expandafter\def\csname PY@tok@gu\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.50,0.00,0.50}{##1}}}
|
||||
\expandafter\def\csname PY@tok@gd\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.63,0.00,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@gi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.63,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@gr\endcsname{\def\PY@tc##1{\textcolor[rgb]{1.00,0.00,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@ge\endcsname{\let\PY@it=\textit}
|
||||
\expandafter\def\csname PY@tok@gs\endcsname{\let\PY@bf=\textbf}
|
||||
\expandafter\def\csname PY@tok@gp\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,0.50}{##1}}}
|
||||
\expandafter\def\csname PY@tok@go\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.53,0.53,0.53}{##1}}}
|
||||
\expandafter\def\csname PY@tok@gt\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.27,0.87}{##1}}}
|
||||
\expandafter\def\csname PY@tok@err\endcsname{\def\PY@bc##1{\setlength{\fboxsep}{0pt}\fcolorbox[rgb]{1.00,0.00,0.00}{1,1,1}{\strut ##1}}}
|
||||
\expandafter\def\csname PY@tok@kc\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@kd\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@kn\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@kr\endcsname{\let\PY@bf=\textbf\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@bp\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.50,0.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@fm\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.00,0.00,1.00}{##1}}}
|
||||
\expandafter\def\csname PY@tok@vc\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
|
||||
\expandafter\def\csname PY@tok@vg\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
|
||||
\expandafter\def\csname PY@tok@vi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
|
||||
\expandafter\def\csname PY@tok@vm\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.10,0.09,0.49}{##1}}}
|
||||
\expandafter\def\csname PY@tok@sa\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
|
||||
\expandafter\def\csname PY@tok@sb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
|
||||
\expandafter\def\csname PY@tok@sc\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
|
||||
\expandafter\def\csname PY@tok@dl\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
|
||||
\expandafter\def\csname PY@tok@s2\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
|
||||
\expandafter\def\csname PY@tok@sh\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
|
||||
\expandafter\def\csname PY@tok@s1\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.73,0.13,0.13}{##1}}}
|
||||
\expandafter\def\csname PY@tok@mb\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
|
||||
\expandafter\def\csname PY@tok@mf\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
|
||||
\expandafter\def\csname PY@tok@mh\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
|
||||
\expandafter\def\csname PY@tok@mi\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
|
||||
\expandafter\def\csname PY@tok@il\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
|
||||
\expandafter\def\csname PY@tok@mo\endcsname{\def\PY@tc##1{\textcolor[rgb]{0.40,0.40,0.40}{##1}}}
|
||||
\expandafter\def\csname PY@tok@ch\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
|
||||
\expandafter\def\csname PY@tok@cm\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
|
||||
\expandafter\def\csname PY@tok@cpf\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
|
||||
\expandafter\def\csname PY@tok@c1\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
|
||||
\expandafter\def\csname PY@tok@cs\endcsname{\let\PY@it=\textit\def\PY@tc##1{\textcolor[rgb]{0.25,0.50,0.50}{##1}}}
|
||||
|
||||
\def\PYZbs{\char`\\}
|
||||
\def\PYZus{\char`\_}
|
||||
\def\PYZob{\char`\{}
|
||||
\def\PYZcb{\char`\}}
|
||||
\def\PYZca{\char`\^}
|
||||
\def\PYZam{\char`\&}
|
||||
\def\PYZlt{\char`\<}
|
||||
\def\PYZgt{\char`\>}
|
||||
\def\PYZsh{\char`\#}
|
||||
\def\PYZpc{\char`\%}
|
||||
\def\PYZdl{\char`\$}
|
||||
\def\PYZhy{\char`\-}
|
||||
\def\PYZsq{\char`\'}
|
||||
\def\PYZdq{\char`\"}
|
||||
\def\PYZti{\char`\~}
|
||||
% for compatibility with earlier versions
|
||||
\def\PYZat{@}
|
||||
\def\PYZlb{[}
|
||||
\def\PYZrb{]}
|
||||
\makeatother
|
||||
|
||||
|
||||
% Exact colors from NB
|
||||
\definecolor{incolor}{rgb}{0.0, 0.0, 0.5}
|
||||
\definecolor{outcolor}{rgb}{0.545, 0.0, 0.0}
|
||||
|
||||
|
||||
|
||||
|
||||
% Prevent overflowing lines due to hard-to-break entities
|
||||
\sloppy
|
||||
% Setup hyperref package
|
||||
\hypersetup{
|
||||
breaklinks=true, % so long urls are correctly broken across lines
|
||||
colorlinks=true,
|
||||
urlcolor=urlcolor,
|
||||
linkcolor=linkcolor,
|
||||
citecolor=citecolor,
|
||||
}
|
||||
% Slightly bigger margins than the latex defaults
|
||||
|
||||
\geometry{verbose,tmargin=1in,bmargin=1in,lmargin=1in,rmargin=1in}
|
||||
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
|
||||
\maketitle
|
||||
|
||||
|
||||
|
||||
|
||||
\section{Ring Resonator Dynamics}\label{ring-resonator-dynamics}
|
||||
|
||||
The following analysis is base on the model from Yariv's PTL, "Critical
|
||||
Coupling and Its Control in Optical Waveguide-Ring Resonator Systems",
|
||||
in 2002. We mainly focus on the dynamic of how it reach the static
|
||||
state. We start from the light reach the coupler at the bus wavguide.
|
||||
|
||||
P.S.: We split the time to discrete step of each round trip of light in
|
||||
the ring.
|
||||
|
||||
\begin{Verbatim}[commandchars=\\\{\}]
|
||||
{\color{incolor}In [{\color{incolor}1}]:} \PY{k+kn}{import} \PY{n+nn}{numpy} \PY{k}{as} \PY{n+nn}{np}
|
||||
\PY{k+kn}{import} \PY{n+nn}{matplotlib}\PY{n+nn}{.}\PY{n+nn}{pyplot} \PY{k}{as} \PY{n+nn}{plt}
|
||||
\PY{o}{\PYZpc{}}\PY{k}{matplotlib} inline
|
||||
|
||||
\PY{n}{T} \PY{o}{=} \PY{l+m+mf}{0.99}
|
||||
\PY{n}{K} \PY{o}{=} \PY{l+m+mi}{1} \PY{o}{\PYZhy{}} \PY{n}{T}
|
||||
\PY{n}{Alpha} \PY{o}{=} \PY{l+m+mf}{0.99}
|
||||
\PY{n}{t} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{sqrt}\PY{p}{(}\PY{n}{T}\PY{p}{)} \PY{o}{+} \PY{l+m+mf}{0.0}\PY{n}{j}
|
||||
\PY{n}{k} \PY{o}{=} \PY{l+m+mf}{0.0} \PY{o}{+} \PY{l+m+mi}{1}\PY{n}{j} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{sqrt}\PY{p}{(}\PY{n}{K}\PY{p}{)}
|
||||
\PY{n}{alpha} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{sqrt}\PY{p}{(}\PY{n}{Alpha}\PY{p}{)}
|
||||
\PY{n}{theta} \PY{o}{=} \PY{l+m+mf}{2.0} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{pi}
|
||||
\end{Verbatim}
|
||||
|
||||
|
||||
We define a function to generate the time series of a1, a2, b1 \& a2:\\
|
||||
\textbf{a{[}n{]} =\textgreater{} {[}a1(n-step), a2(n-step){]}}\\
|
||||
\textbf{b{[}n{]} =\textgreater{} {[}b1(n-step), b2(n-step){]}}
|
||||
|
||||
\begin{Verbatim}[commandchars=\\\{\}]
|
||||
{\color{incolor}In [{\color{incolor}2}]:} \PY{k}{def} \PY{n+nf}{propagate\PYZus{}in\PYZus{}cycle}\PY{p}{(}\PY{n}{t}\PY{p}{,} \PY{n}{k}\PY{p}{,} \PY{n}{alpha}\PY{p}{,} \PY{n}{theta}\PY{p}{,} \PY{n}{num\PYZus{}cycle} \PY{o}{=} \PY{l+m+mi}{1000}\PY{p}{)}\PY{p}{:}
|
||||
\PY{n}{a1\PYZus{}0} \PY{o}{=} \PY{l+m+mf}{1.0} \PY{o}{+} \PY{l+m+mf}{0.0}\PY{n}{j}
|
||||
\PY{n}{a2\PYZus{}0} \PY{o}{=} \PY{l+m+mf}{0.0} \PY{o}{+} \PY{l+m+mf}{0.0}\PY{n}{j}
|
||||
\PY{n}{a} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{zeros}\PY{p}{(}\PY{p}{(}\PY{n}{num\PYZus{}cycle}\PY{p}{,} \PY{l+m+mi}{2}\PY{p}{)}\PY{p}{,} \PY{n}{dtype}\PY{o}{=}\PY{n+nb}{complex}\PY{p}{)}
|
||||
\PY{n}{b} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{zeros}\PY{p}{(}\PY{p}{(}\PY{n}{num\PYZus{}cycle}\PY{p}{,} \PY{l+m+mi}{2}\PY{p}{)}\PY{p}{,} \PY{n}{dtype}\PY{o}{=}\PY{n+nb}{complex}\PY{p}{)}
|
||||
|
||||
\PY{n}{a}\PY{p}{[}\PY{l+m+mi}{0}\PY{p}{]} \PY{o}{=} \PY{p}{[}\PY{n}{a1\PYZus{}0}\PY{p}{,} \PY{n}{a2\PYZus{}0}\PY{p}{]}
|
||||
|
||||
\PY{n}{coupler} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{p}{[}\PY{p}{[}\PY{n}{t}\PY{p}{,} \PY{n}{k}\PY{p}{]}\PY{p}{,}
|
||||
\PY{p}{[}\PY{o}{\PYZhy{}}\PY{n}{k}\PY{o}{.}\PY{n}{conjugate}\PY{p}{(}\PY{p}{)}\PY{p}{,} \PY{n}{t}\PY{o}{.}\PY{n}{conjugate}\PY{p}{(}\PY{p}{)}\PY{p}{]}\PY{p}{]}\PY{p}{)}
|
||||
|
||||
\PY{k}{for} \PY{n}{n} \PY{o+ow}{in} \PY{n+nb}{range}\PY{p}{(}\PY{n}{num\PYZus{}cycle} \PY{o}{\PYZhy{}} \PY{l+m+mi}{1}\PY{p}{)}\PY{p}{:}
|
||||
\PY{n}{b}\PY{p}{[}\PY{n}{n}\PY{p}{]} \PY{o}{=} \PY{n}{coupler}\PY{n+nd}{@a}\PY{p}{[}\PY{n}{n}\PY{p}{]}
|
||||
\PY{n}{a}\PY{p}{[}\PY{n}{n}\PY{o}{+}\PY{l+m+mi}{1}\PY{p}{]} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{array}\PY{p}{(}\PY{p}{[}\PY{n}{a1\PYZus{}0}\PY{p}{,} \PY{n}{b}\PY{p}{[}\PY{n}{n}\PY{p}{]}\PY{p}{[}\PY{l+m+mi}{1}\PY{p}{]} \PY{o}{*} \PY{n}{alpha} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{exp}\PY{p}{(}\PY{l+m+mf}{1.}\PY{n}{j} \PY{o}{*} \PY{n}{theta}\PY{p}{)}\PY{p}{]}\PY{p}{)}
|
||||
|
||||
\PY{n}{b}\PY{p}{[}\PY{n}{num\PYZus{}cycle} \PY{o}{\PYZhy{}} \PY{l+m+mi}{1}\PY{p}{]} \PY{o}{=} \PY{n}{coupler}\PY{n+nd}{@a}\PY{p}{[}\PY{n}{num\PYZus{}cycle} \PY{o}{\PYZhy{}} \PY{l+m+mi}{1}\PY{p}{]}
|
||||
|
||||
\PY{k}{return} \PY{n}{a}\PY{p}{,} \PY{n}{b}
|
||||
|
||||
\PY{n}{a}\PY{p}{,} \PY{n}{b} \PY{o}{=} \PY{n}{propagate\PYZus{}in\PYZus{}cycle}\PY{p}{(}\PY{n}{t}\PY{o}{=}\PY{n}{t}\PY{p}{,} \PY{n}{k}\PY{o}{=}\PY{n}{k}\PY{p}{,} \PY{n}{alpha}\PY{o}{=}\PY{n}{alpha}\PY{p}{,} \PY{n}{theta}\PY{o}{=}\PY{n}{theta}\PY{p}{,} \PY{n}{num\PYZus{}cycle} \PY{o}{=} \PY{l+m+mi}{1000}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{figure}\PY{p}{(}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{subplot}\PY{p}{(}\PY{l+m+mi}{121}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n+nb}{abs}\PY{p}{(}\PY{n}{a}\PY{p}{[}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{a1}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n+nb}{abs}\PY{p}{(}\PY{n}{b}\PY{p}{[}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{b1}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{yscale}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{log}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{title}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{a1 \PYZam{} b1 in Bus WG}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{legend}\PY{p}{(}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{subplot}\PY{p}{(}\PY{l+m+mi}{122}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n+nb}{abs}\PY{p}{(}\PY{n}{a}\PY{p}{[}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{a2}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n+nb}{abs}\PY{p}{(}\PY{n}{b}\PY{p}{[}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{b2}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{title}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{a2 \PYZam{} b2 in Resonator}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{yscale}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{linear}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{legend}\PY{p}{(}\PY{p}{)}
|
||||
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{show}\PY{p}{(}\PY{p}{)}
|
||||
\end{Verbatim}
|
||||
|
||||
|
||||
\begin{center}
|
||||
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_3_0.png}
|
||||
\end{center}
|
||||
{ \hspace*{\fill} \\}
|
||||
|
||||
You can invitigate the change of bus waveguide output intensity \& the
|
||||
ring intensity gain from the coupler by each cycle (normalized by the
|
||||
input intensity a1).
|
||||
|
||||
\begin{Verbatim}[commandchars=\\\{\}]
|
||||
{\color{incolor}In [{\color{incolor}3}]:} \PY{n}{plt}\PY{o}{.}\PY{n}{figure}\PY{p}{(}\PY{p}{)}
|
||||
\PY{n}{bus\PYZus{}output} \PY{o}{=} \PY{n+nb}{abs}\PY{p}{(}\PY{n}{b}\PY{p}{[}\PY{p}{:}\PY{p}{,} \PY{l+m+mi}{0}\PY{p}{]}\PY{o}{/}\PY{n}{a}\PY{p}{[}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}
|
||||
\PY{n}{gain\PYZus{}per\PYZus{}cycle} \PY{o}{=} \PY{p}{(}\PY{n+nb}{abs}\PY{p}{(}\PY{n}{b}\PY{p}{[}\PY{p}{:}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2} \PY{o}{\PYZhy{}} \PY{n+nb}{abs}\PY{p}{(}\PY{n}{a}\PY{p}{[}\PY{p}{:}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}\PY{p}{)}\PY{o}{/}\PY{n+nb}{abs}\PY{p}{(}\PY{n}{a}\PY{p}{[}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}
|
||||
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n}{bus\PYZus{}output}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Bus WG Output}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n}{gain\PYZus{}per\PYZus{}cycle}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Energy gain of ring after coupler per cycle}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n}{bus\PYZus{}output} \PY{o}{+} \PY{n}{gain\PYZus{}per\PYZus{}cycle}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Sum of both}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{legend}\PY{p}{(}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{show}\PY{p}{(}\PY{p}{)}
|
||||
\end{Verbatim}
|
||||
|
||||
|
||||
\begin{center}
|
||||
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_5_0.png}
|
||||
\end{center}
|
||||
{ \hspace*{\fill} \\}
|
||||
|
||||
We can see that the bus waveguide output power:\\
|
||||
\textbf{enegry loss from the ring via coupler + enegry from a1 does not
|
||||
coupled to the ring}
|
||||
|
||||
is same as the enegry gain of the ring after coupler:\\
|
||||
\textbf{enegry gain from bus waveguide + energy of the ring does not
|
||||
coupled out to bus waveguide}
|
||||
|
||||
Therefore, when the distructive interference happened in bus output port
|
||||
(b1) of the coupler, the energy will transfer to the port of the ring
|
||||
(b2). It must be true since the coupler is lossless (coupler martrix is
|
||||
unitary, i.e., \textbar{}t\textbar{}\^{}2 + \textbar{}k\textbar{}\^{}2 =
|
||||
1)\\
|
||||
It is an interesting constructive \& distructive interference porporty
|
||||
of wave 😉
|
||||
|
||||
\subsubsection{Play with other
|
||||
parameters}\label{play-with-other-parameters}
|
||||
|
||||
Enjoy\textasciitilde{} 😊
|
||||
|
||||
\begin{Verbatim}[commandchars=\\\{\}]
|
||||
{\color{incolor}In [{\color{incolor}4}]:} \PY{n}{T2} \PY{o}{=} \PY{l+m+mf}{0.999}
|
||||
\PY{n}{K2} \PY{o}{=} \PY{l+m+mi}{1} \PY{o}{\PYZhy{}} \PY{n}{T2}
|
||||
\PY{n}{Alpha2} \PY{o}{=} \PY{l+m+mf}{0.999}
|
||||
\PY{n}{t2} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{sqrt}\PY{p}{(}\PY{n}{T2}\PY{p}{)} \PY{o}{+} \PY{l+m+mf}{0.0}\PY{n}{j}
|
||||
\PY{n}{k2} \PY{o}{=} \PY{l+m+mf}{0.0} \PY{o}{+} \PY{l+m+mi}{1}\PY{n}{j} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{sqrt}\PY{p}{(}\PY{n}{K2}\PY{p}{)}
|
||||
\PY{n}{alpha2} \PY{o}{=} \PY{n}{np}\PY{o}{.}\PY{n}{sqrt}\PY{p}{(}\PY{n}{Alpha2}\PY{p}{)}
|
||||
\PY{n}{theta2} \PY{o}{=} \PY{l+m+mf}{2.0} \PY{o}{*} \PY{n}{np}\PY{o}{.}\PY{n}{pi}
|
||||
\PY{n}{a2}\PY{p}{,} \PY{n}{b2} \PY{o}{=} \PY{n}{propagate\PYZus{}in\PYZus{}cycle}\PY{p}{(}\PY{n}{t}\PY{o}{=}\PY{n}{t2}\PY{p}{,} \PY{n}{k}\PY{o}{=}\PY{n}{k2}\PY{p}{,} \PY{n}{alpha}\PY{o}{=}\PY{n}{alpha2}\PY{p}{,} \PY{n}{theta}\PY{o}{=}\PY{n}{theta2}\PY{p}{,} \PY{n}{num\PYZus{}cycle} \PY{o}{=} \PY{l+m+mi}{10000}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{figure}\PY{p}{(}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{subplot}\PY{p}{(}\PY{l+m+mi}{121}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n+nb}{abs}\PY{p}{(}\PY{n}{a2}\PY{p}{[}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{a1}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n+nb}{abs}\PY{p}{(}\PY{n}{b2}\PY{p}{[}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{b1}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{yscale}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{log}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{title}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{a1 \PYZam{} b1 in Bus WG}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{legend}\PY{p}{(}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{subplot}\PY{p}{(}\PY{l+m+mi}{122}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n+nb}{abs}\PY{p}{(}\PY{n}{a2}\PY{p}{[}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{a2}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n+nb}{abs}\PY{p}{(}\PY{n}{b2}\PY{p}{[}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{b2}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{title}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{a2 \PYZam{} b2 in Resonator}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{yscale}\PY{p}{(}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{linear}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{legend}\PY{p}{(}\PY{p}{)}
|
||||
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{show}\PY{p}{(}\PY{p}{)}
|
||||
\end{Verbatim}
|
||||
|
||||
|
||||
\begin{center}
|
||||
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_8_0.png}
|
||||
\end{center}
|
||||
{ \hspace*{\fill} \\}
|
||||
|
||||
\begin{Verbatim}[commandchars=\\\{\}]
|
||||
{\color{incolor}In [{\color{incolor}5}]:} \PY{n}{plt}\PY{o}{.}\PY{n}{figure}\PY{p}{(}\PY{p}{)}
|
||||
\PY{n}{bus\PYZus{}output} \PY{o}{=} \PY{n+nb}{abs}\PY{p}{(}\PY{n}{b2}\PY{p}{[}\PY{p}{:}\PY{p}{,} \PY{l+m+mi}{0}\PY{p}{]}\PY{o}{/}\PY{n}{a2}\PY{p}{[}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}
|
||||
\PY{n}{gain\PYZus{}per\PYZus{}cycle} \PY{o}{=} \PY{p}{(}\PY{n+nb}{abs}\PY{p}{(}\PY{n}{b2}\PY{p}{[}\PY{p}{:}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2} \PY{o}{\PYZhy{}} \PY{n+nb}{abs}\PY{p}{(}\PY{n}{a2}\PY{p}{[}\PY{p}{:}\PY{p}{,} \PY{l+m+mi}{1}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}\PY{p}{)}\PY{o}{/}\PY{n+nb}{abs}\PY{p}{(}\PY{n}{a2}\PY{p}{[}\PY{p}{:}\PY{p}{,}\PY{l+m+mi}{0}\PY{p}{]}\PY{p}{)}\PY{o}{*}\PY{o}{*}\PY{l+m+mi}{2}
|
||||
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n}{bus\PYZus{}output}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Bus WG Output}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n}{gain\PYZus{}per\PYZus{}cycle}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s1}{\PYZsq{}}\PY{l+s+s1}{Energy gain of ring after coupler per cycle}\PY{l+s+s1}{\PYZsq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{plot}\PY{p}{(}\PY{n}{bus\PYZus{}output} \PY{o}{+} \PY{n}{gain\PYZus{}per\PYZus{}cycle}\PY{p}{,} \PY{n}{label}\PY{o}{=}\PY{l+s+s2}{\PYZdq{}}\PY{l+s+s2}{Sum of both}\PY{l+s+s2}{\PYZdq{}}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{legend}\PY{p}{(}\PY{p}{)}
|
||||
\PY{n}{plt}\PY{o}{.}\PY{n}{show}\PY{p}{(}\PY{p}{)}
|
||||
\end{Verbatim}
|
||||
|
||||
|
||||
\begin{center}
|
||||
\adjustimage{max size={0.9\linewidth}{0.9\paperheight}}{output_9_0.png}
|
||||
\end{center}
|
||||
{ \hspace*{\fill} \\}
|
||||
|
||||
|
||||
% Add a bibliography block to the postdoc
|
||||
|
||||
|
||||
|
||||
\end{document}
|
BIN
output_3_0.png
Normal file
BIN
output_3_0.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 13 KiB |
BIN
output_5_0.png
Normal file
BIN
output_5_0.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 13 KiB |
BIN
output_8_0.png
Normal file
BIN
output_8_0.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 13 KiB |
BIN
output_9_0.png
Normal file
BIN
output_9_0.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 14 KiB |
41
ref/simple_anim.py
Normal file
41
ref/simple_anim.py
Normal file
@ -0,0 +1,41 @@
|
||||
"""
|
||||
==================
|
||||
Animated line plot
|
||||
==================
|
||||
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.animation as animation
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
|
||||
x = np.arange(0, 2*np.pi, 0.01)
|
||||
line, = ax.plot(x, np.sin(x))
|
||||
|
||||
|
||||
def init(): # only required for blitting to give a clean slate.
|
||||
line.set_ydata([np.nan] * len(x))
|
||||
return line,
|
||||
|
||||
|
||||
def animate(i):
|
||||
line.set_ydata(np.sin(x + i / 100)) # update the data.
|
||||
return line,
|
||||
|
||||
|
||||
ani = animation.FuncAnimation(
|
||||
fig, animate, init_func=init, interval=2, blit=True, save_count=50)
|
||||
|
||||
# To save the animation, use e.g.
|
||||
#
|
||||
# ani.save("movie.mp4")
|
||||
#
|
||||
# or
|
||||
#
|
||||
# from matplotlib.animation import FFMpegWriter
|
||||
# writer = FFMpegWriter(fps=15, metadata=dict(artist='Me'), bitrate=1800)
|
||||
# ani.save("movie.mp4", writer=writer)
|
||||
|
||||
plt.show()
|
62
ref/strip_chart.py
Normal file
62
ref/strip_chart.py
Normal file
@ -0,0 +1,62 @@
|
||||
"""
|
||||
============
|
||||
Oscilloscope
|
||||
============
|
||||
|
||||
Emulates an oscilloscope.
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from matplotlib.lines import Line2D
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.animation as animation
|
||||
|
||||
|
||||
class Scope(object):
|
||||
def __init__(self, ax, maxt=2, dt=0.02):
|
||||
self.ax = ax
|
||||
self.dt = dt
|
||||
self.maxt = maxt
|
||||
self.tdata = [0]
|
||||
self.ydata = [0]
|
||||
self.line = Line2D(self.tdata, self.ydata)
|
||||
self.ax.add_line(self.line)
|
||||
self.ax.set_ylim(-.1, 1.1)
|
||||
self.ax.set_xlim(0, self.maxt)
|
||||
|
||||
def update(self, y):
|
||||
lastt = self.tdata[-1]
|
||||
if lastt > self.tdata[0] + self.maxt: # reset the arrays
|
||||
self.tdata = [self.tdata[-1]]
|
||||
self.ydata = [self.ydata[-1]]
|
||||
self.ax.set_xlim(self.tdata[0], self.tdata[0] + self.maxt)
|
||||
self.ax.figure.canvas.draw()
|
||||
|
||||
t = self.tdata[-1] + self.dt
|
||||
self.tdata.append(t)
|
||||
self.ydata.append(y)
|
||||
self.line.set_data(self.tdata, self.ydata)
|
||||
return self.line,
|
||||
|
||||
|
||||
def emitter(p=0.03):
|
||||
'return a random value with probability p, else 0'
|
||||
while True:
|
||||
v = np.random.rand(1)
|
||||
if v > p:
|
||||
yield 0.
|
||||
else:
|
||||
yield np.random.rand(1)
|
||||
|
||||
# Fixing random state for reproducibility
|
||||
np.random.seed(19680801)
|
||||
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
scope = Scope(ax)
|
||||
|
||||
# pass a generator in "emitter" to produce data for the update func
|
||||
ani = animation.FuncAnimation(fig, scope.update, emitter, interval=10,
|
||||
blit=True)
|
||||
|
||||
plt.show()
|
3
result_autocorr.csv
Normal file
3
result_autocorr.csv
Normal file
File diff suppressed because one or more lines are too long
3
result_autocorr.dat
Normal file
3
result_autocorr.dat
Normal file
File diff suppressed because one or more lines are too long
5
result_freq.csv
Normal file
5
result_freq.csv
Normal file
File diff suppressed because one or more lines are too long
5
result_freq.dat
Normal file
5
result_freq.dat
Normal file
File diff suppressed because one or more lines are too long
4
result_time.csv
Normal file
4
result_time.csv
Normal file
File diff suppressed because one or more lines are too long
4
result_time.dat
Normal file
4
result_time.dat
Normal file
File diff suppressed because one or more lines are too long
193
split_step_fourier_method.py
Normal file
193
split_step_fourier_method.py
Normal file
@ -0,0 +1,193 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sun Mar 18 00:49:54 2018
|
||||
|
||||
@author: chris
|
||||
|
||||
This code solves the NLS equation with the split-step Fourier method based
|
||||
on Govind P. Agrawal in March 2005 for the Nonlinear fiber optics book (Appendix B)
|
||||
"""
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import time
|
||||
|
||||
# ---Specify input parameters
|
||||
distance = 150. # Enter fiber length (in units of L_c)=
|
||||
# Normalized 2nd-dispersion: kappa=beta2*f^2*L/2):
|
||||
# +ve for normal,-ve for anomalous*)
|
||||
kappa = -0.001
|
||||
sigma = 0. # Normalized 3rd-dispersion: sigma=beta3*f^3*L/6
|
||||
G = 1. # small signal gain of Ramam Amp: G=g*L
|
||||
Is = 1. # gain saturation parameter
|
||||
alpha = 0.4 # Normalized fiber amplitude absorption coeff: alpha=l*L
|
||||
|
||||
# Nonlinear parameter n=')
|
||||
# sqrt(L_D/L_NL)=sqrt(gamma*P0*T0^2/|beta2|) or QT: n=kappa^0.5
|
||||
n = 2. ** 0.5
|
||||
|
||||
# ---Specify filter parameters
|
||||
bdwidth = 2. * np.pi * 6.
|
||||
delta = 2. * np.pi * 0.5
|
||||
a = np.log(np.sqrt(0.95))
|
||||
perta = 0.3
|
||||
pertfsr = 0.17
|
||||
T = 0.2
|
||||
t = np.sqrt(T)
|
||||
r = 1.j * np.sqrt(1. - T)
|
||||
|
||||
# ---Specify input parameters
|
||||
mshape = -1. # m=0 for sech,m>0 for super-Gaussian=
|
||||
chirp0 = 0. # % input pulse chirp (default value)
|
||||
|
||||
# P = 1/(gamma*L); (P is the ref peak power);
|
||||
# uu = A/sqrt(P);
|
||||
# z = z0/L_c; (z0 is the real length, L_c is the cavity length);
|
||||
# tau = f*t; (t is the time of reference traveling frame);
|
||||
|
||||
|
||||
# ---set simulation parameters
|
||||
nt = 2 ** 13 # % FFT points (powers of 2)
|
||||
Tmax = 100. # (half) window size
|
||||
stepno = 1 * round(20 * distance * n ** 2) # No.of z steps to
|
||||
dz = distance / stepno # step size in z
|
||||
dtau = (2. * Tmax) / nt # step size in tau
|
||||
|
||||
Twin = 5.
|
||||
fmax = (1. / (2. * Tmax)) * nt / 2.
|
||||
fwin = 5.
|
||||
|
||||
filterz = 0.5
|
||||
plotz = 5
|
||||
|
||||
# ---tau and omega arrays
|
||||
tau = np.arange(-nt / 2., nt / 2.) * dtau # temporal grid
|
||||
# [(0:nt/2-1) (-nt/2:-1)]
|
||||
omega = (np.pi / Tmax) * \
|
||||
np.append(np.arange(0.0, nt / 2.), np.arange(-nt / 2., 0.0))
|
||||
|
||||
# frequency grid
|
||||
delaytau = dtau * np.arange(-round(Twin / dtau), round(Twin / dtau) + 1)
|
||||
|
||||
# Input Field profile
|
||||
if mshape == 0:
|
||||
# ;% soliton
|
||||
uu = np.exp(-0.5j * chirp0 * tau ** 2.) / np.cosh(tau)
|
||||
elif mshape > 0:
|
||||
# super-Gaussian
|
||||
uu = np.exp(-0.5 * (1. + 1.j * chirp0) * tau ** (2. * mshape))
|
||||
else:
|
||||
# White noise
|
||||
uu = (np.random.randn(nt) + 1.j * np.random.randn(nt)) * np.sqrt(0.5)
|
||||
|
||||
# temp = np.fft.fftshift(np.fft.ifft(uu) * (nt * dtau) / np.sqrt(2. * np.pi))
|
||||
tempomega = np.fft.fftshift(omega)
|
||||
|
||||
# ---store dispersive phase shifts to speedup code
|
||||
# % nonlinear phase factor
|
||||
dispersion = np.exp((-alpha + 1.j * kappa * omega ** 2. +
|
||||
1.j * sigma * omega ** 3.) * dz)
|
||||
|
||||
# comb filter type
|
||||
# original comb filter + BPF
|
||||
# filtert = np.exp(-omega ** 2. / bdwidth ** 2.) * (t ** 2.) / \
|
||||
# (1 - r ** 2 * np.exp(-1.j * (omega + delta) + a))
|
||||
|
||||
# perturbated comb filter + BPF
|
||||
filtert = np.exp(-omega ** 2. / bdwidth ** 2. -
|
||||
perta * np.sin(0.5 * omega / pertfsr) ** 2) * \
|
||||
(t ** 2) / (1.0 - r ** 2 * np.exp(-1.j * (omega + delta) + a))
|
||||
|
||||
fig1 = plt.figure()
|
||||
plt.plot(tempomega / (2. * np.pi),
|
||||
np.fft.fftshift(10. * np.log10(np.abs(filtert) ** 2.)))
|
||||
plt.title("Perturbated comb filter + BPF")
|
||||
plt.xlim(-fwin, fwin)
|
||||
plt.xlim(-fwin, fwin)
|
||||
plt.ylim(-30., 10.)
|
||||
plt.show()
|
||||
|
||||
# %*********[Beginning of MAIN Loop]***********
|
||||
# % scheme:1/2N\[Rule]D\[Rule]1/2N;first half step nonlinear
|
||||
temp = uu * np.exp((1.j * np.abs(uu) ** 2. +
|
||||
G / (1.0 + np.abs(uu) ** 2. / Is)) * dz / 2.)
|
||||
# % note hhz/2
|
||||
|
||||
start_time = time.time()
|
||||
time_used = time.time() - start_time
|
||||
z = 0
|
||||
|
||||
# Realtime monitoring the simulation progress
|
||||
plt.figure()
|
||||
fig2, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(3, 2)
|
||||
plt.tight_layout()
|
||||
abs_temp = np.abs(temp)
|
||||
autocorr0 = None
|
||||
line1, = ax1.plot(abs_temp)
|
||||
line2, = ax2.plot(abs_temp)
|
||||
line3, = ax3.plot(abs_temp)
|
||||
line4, = ax4.plot(abs_temp)
|
||||
line5, = ax5.plot(abs_temp)
|
||||
plt.ion()
|
||||
|
||||
for i in range(stepno):
|
||||
if round((z % 1 - filterz) / dz) == 0:
|
||||
ftemp = np.fft.ifft(temp) * filtert * dispersion
|
||||
else:
|
||||
ftemp = np.fft.ifft(temp) * dispersion
|
||||
|
||||
uu = np.fft.fft(ftemp)
|
||||
temp = uu * np.exp((1.j * np.abs(uu) ** 2. + G / (1.0 + np.abs(uu) ** 2 / Is)) * dz)
|
||||
z = z + dz
|
||||
|
||||
if round((z % plotz) / dz) == 0 or round(((z % plotz) - plotz) / dz) == 0:
|
||||
time_used = time.time() - start_time
|
||||
print("Z: " + str(z))
|
||||
# fig2.suptitle("i = " + str(i) + ", z = " + str(z) + " Time: " + str(time_used))
|
||||
|
||||
line1.set_data(tau, np.abs(temp) ** 2.)
|
||||
ax1.relim()
|
||||
ax1.autoscale_view(True, True, True)
|
||||
ax1.set_xlim([-Twin, Twin])
|
||||
ax1.set_title("Time domain (Magnified)")
|
||||
|
||||
ftemp0 = np.fft.fftshift(ftemp * (nt * dtau) / np.sqrt(2 * np.pi))
|
||||
|
||||
line2.set_data(tempomega / (2. * np.pi), 10. * np.log10(np.abs(ftemp0) ** 2.))
|
||||
#
|
||||
ax2.relim()
|
||||
ax2.autoscale_view(True, True, True)
|
||||
ax2.set_xlim([-fwin, fwin])
|
||||
ax2.set_title("Spectrum (Magnified)")
|
||||
|
||||
line3.set_data(tau, np.abs(temp) ** 2)
|
||||
ax3.relim()
|
||||
ax3.autoscale_view(True, True, True)
|
||||
ax3.set_xlim([-Tmax, Tmax])
|
||||
ax3.set_title("Time domain (Full Scale)")
|
||||
|
||||
line4.set_data(tempomega / (2. * np.pi), 10. * np.log10(np.abs(ftemp0) ** 2.))
|
||||
ax4.relim()
|
||||
ax4.autoscale_view(True, True, True)
|
||||
ax4.set_xlim([-fmax, fmax])
|
||||
ax4.set_title("Spectrum (Full Scale)")
|
||||
|
||||
autocorr0 = np.fft.fftshift(
|
||||
np.fft.ifft(np.fft.fft(np.abs(temp) ** 2) * np.conjugate(np.fft.fft(np.abs(temp) ** 2))))
|
||||
|
||||
line5.set_data(tau, np.abs(autocorr0) / max(np.abs(autocorr0)))
|
||||
ax5.relim()
|
||||
ax5.autoscale_view(True, True, True)
|
||||
ax5.set_xlim([-Twin, Twin])
|
||||
ax5.set_title("Autocorrelation")
|
||||
|
||||
plt.pause(0.1)
|
||||
plt.ioff()
|
||||
plt.show()
|
||||
|
||||
|
||||
# Exporting results
|
||||
fname = "result" # file name
|
||||
np.savetxt(fname + "_time.csv", (tau, np.real(uu), np.imag(uu), np.abs(uu) ** 2), delimiter=",")
|
||||
np.savetxt(fname + "_freq.csv", (tempomega / (2. * np.pi), np.real(temp), np.imag(temp),
|
||||
np.abs(temp) ** 2, np.fft.fftshift(np.abs(filtert) ** 2.)), delimiter=",")
|
||||
np.savetxt(fname + "_autocorr.csv", (tau, np.abs(autocorr0), np.abs(autocorr0) / max(np.abs(autocorr0))), delimiter=",")
|
177
split_step_fourier_method_v0.py
Normal file
177
split_step_fourier_method_v0.py
Normal file
@ -0,0 +1,177 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Sun Mar 18 00:49:54 2018
|
||||
|
||||
@author: chris
|
||||
|
||||
This code solves the NLS equation with the split-step Fourier method based
|
||||
on Govind P. Agrawal in March 2005 for the NLFO book
|
||||
"""
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import time
|
||||
|
||||
# ---Specify input parameters
|
||||
distance = 150. # Enter fiber length (in units of L_c)=
|
||||
# Normalized 2nd-dispersion: kappa=beta2*f^2*L/2):
|
||||
# +ve for normal,-ve for anomalous*)
|
||||
kappa = -0.001
|
||||
sigma = 0. # Normalized 3rd-dispersion: sigma=beta3*f^3*L/6
|
||||
G = 1. # small signal gain of Ramam Amp: G=g*L
|
||||
Is = 1. # gain saturation parameter
|
||||
alpha = 0.4 # Normalized fiber amplitude absorption coeff: alpha=l*L
|
||||
|
||||
|
||||
# Nonlinear parameter n=')
|
||||
# sqrt(L_D/L_NL)=sqrt(gamma*P0*T0^2/|beta2|) or QT: n=kappa^0.5
|
||||
n = 2. ** 0.5
|
||||
|
||||
|
||||
# ---Specify filter parameters
|
||||
bdwidth = 2. * np.pi * 6.
|
||||
delta = 2. * np.pi * 0.5
|
||||
a = np.log(np.sqrt(0.95))
|
||||
perta = 0.3
|
||||
pertfsr = 0.17
|
||||
T = 0.2
|
||||
t = np.sqrt(T)
|
||||
r = 1.j * np.sqrt(1. - T)
|
||||
|
||||
|
||||
# ---Specify input parameters
|
||||
mshape = -1. # m=0 for sech,m>0 for super-Gaussian=
|
||||
chirp0 = 0. # % input pulse chirp (default value)
|
||||
|
||||
|
||||
# P = 1/(gamma*L); (P is the ref peak power);
|
||||
# uu = A/sqrt(P);
|
||||
# z = z0/L_c; (z0 is the real length, L_c is the cavity length);
|
||||
# tau = f*t; (t is the time of reference traveling frame);
|
||||
|
||||
|
||||
# ---set simulation parameters
|
||||
nt = 2 ** 13 # % FFT points (powers of 2)
|
||||
Tmax = 100. # (half) window size
|
||||
stepno = 1 * round(20 * distance * n ** 2) # No.of z steps to
|
||||
dz = distance / stepno # step size in z
|
||||
dtau = (2. * Tmax) / nt # step size in tau
|
||||
|
||||
|
||||
Twin = 5.
|
||||
fmax = (1. / (2. * Tmax)) * nt / 2.
|
||||
fwin = 5.
|
||||
|
||||
filterz = 0.5
|
||||
plotz = 5
|
||||
|
||||
# ---tau and omega arrays
|
||||
tau = np.arange(-nt / 2., nt / 2.) * dtau # temporal grid
|
||||
# [(0:nt/2-1) (-nt/2:-1)]
|
||||
omega = (np.pi / Tmax) * \
|
||||
np.append(np.arange(0.0 , nt / 2.), np.arange(-nt / 2., 0.0))
|
||||
|
||||
|
||||
# frequency grid
|
||||
delaytau = dtau * np.arange(-round(Twin / dtau), round(Twin / dtau) + 1)
|
||||
|
||||
|
||||
# Input Field profile
|
||||
if mshape == 0:
|
||||
# ;% soliton
|
||||
uu = np.exp(-0.5j * chirp0 * tau ** 2.) / np.cosh(tau)
|
||||
elif mshape > 0:
|
||||
# super-Gaussian
|
||||
uu = np.exp(-0.5 * (1. + 1.j * chirp0) * tau ** (2. * mshape))
|
||||
else:
|
||||
# White noise
|
||||
uu = (np.random.randn(nt) + 1.j * np.random.randn(nt)) * np.sqrt(0.5)
|
||||
|
||||
|
||||
temp = np.fft.fftshift(np.fft.ifft(uu) * (nt * dtau) / np.sqrt(2.* np.pi))
|
||||
tempomega = np.fft.fftshift(omega)
|
||||
|
||||
|
||||
# ---store dispersive phase shifts to speedup code
|
||||
# % nonlinear phase factor
|
||||
dispersion = np.exp((-alpha + 1.j * kappa * omega **2. + \
|
||||
1.j * sigma * omega ** 3.) * dz)
|
||||
|
||||
# comb filter type
|
||||
# original comb filter + BPF
|
||||
# filtert = np.exp(-omega ** 2. / bdwidth ** 2.) * (t ** 2.) / \
|
||||
# (1 - r ** 2 * np.exp(-1.j * (omega + delta) + a))
|
||||
|
||||
# perturbated comb filter + BPF
|
||||
filtert = np.exp(-omega ** 2. / bdwidth ** 2. - \
|
||||
perta * np.sin(0.5 * omega / pertfsr) ** 2) * \
|
||||
(t ** 2) / (1.0 - r ** 2 * np.exp(-1.j*(omega + delta) + a))
|
||||
|
||||
plt.figure()
|
||||
plt.plot(tempomega / (2. * np.pi),
|
||||
np.fft.fftshift(10. * np.log10(np.abs(filtert) ** 2.)))
|
||||
plt.xlim(-fwin, fwin)
|
||||
plt.xlim(-fwin, fwin)
|
||||
plt.ylim(-30., 10.)
|
||||
plt.show()
|
||||
|
||||
# %*********[Beginning of MAIN Loop]***********
|
||||
# % scheme:1/2N\[Rule]D\[Rule]1/2N;first half step nonlinear
|
||||
temp = uu * np.exp((1.j * np.abs(uu) ** 2. +
|
||||
G / (1.0 + np.abs(uu) ** 2. / Is )) * dz / 2.)
|
||||
# % note hhz/2
|
||||
|
||||
start_time = time.time()
|
||||
time_used = time.time() - start_time
|
||||
z = 0
|
||||
|
||||
|
||||
# Realtime monitoring the simulation progress
|
||||
|
||||
|
||||
plt.ion()
|
||||
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(3, 2)
|
||||
for i in range(stepno):
|
||||
if round((z % 1 - filterz)/dz) == 0:
|
||||
ftemp = np.fft.ifft(temp) * filtert * dispersion
|
||||
else:
|
||||
ftemp = np.fft.ifft(temp) * dispersion
|
||||
|
||||
uu = np.fft.fft(ftemp)
|
||||
temp = uu*np.exp((1.j * np.abs(uu)**2. + G / (1.0 + np.abs(uu)**2 / Is)) * dz)
|
||||
z = z + dz
|
||||
|
||||
if round((z % plotz) / dz) == 0 or round(((z % plotz) - plotz) / dz) == 0:
|
||||
time_used = time.time() - start_time
|
||||
print(i)
|
||||
|
||||
ax1.clear()
|
||||
ax1.plot(tau, np.abs(temp)**2.)
|
||||
ax1.set_xlim([-Twin, Twin])
|
||||
ax1.set_title("i = " + str(i) + ", z = " + str(z))
|
||||
|
||||
ftemp0 = np.fft.fftshift(ftemp * (nt * dtau) / np.sqrt(2 * np.pi))
|
||||
|
||||
ax2.clear()
|
||||
ax2.plot(tempomega / (2. * np.pi), 10. * np.log10(np.abs(ftemp0)**2.))
|
||||
ax2.set_xlim([-fwin, fwin])
|
||||
ax2.set_title(" Time = " + str(time_used))
|
||||
|
||||
ax3.clear()
|
||||
ax3.plot(tau, np.abs(temp)**2)
|
||||
ax3.set_xlim([-Tmax, Tmax])
|
||||
ax3.set_title("i = " + str(i) + ", z = " + str(z))
|
||||
|
||||
ax4.clear()
|
||||
ax4.plot(tempomega / (2. * np.pi), 10. * np.log10(np.abs(ftemp0)**2.))
|
||||
ax4.set_xlim([-fmax, fmax])
|
||||
ax4.set_title(" Time = " + str(time_used))
|
||||
|
||||
autocorr0 = np.fft.fftshift(
|
||||
np.fft.ifft(np.fft.fft(np.abs(temp)**2) * np.conjugate(np.fft.fft(np.abs(temp)**2))))
|
||||
|
||||
ax5.clear()
|
||||
ax5.plot(tau, autocorr0 / max(autocorr0))
|
||||
ax5.set_xlim([-Twin, Twin])
|
||||
fig.canvas.draw()
|
||||
# PlotRange -> {{-Twin, Twin}, All}, Frame -> True];
|
||||
|
Loading…
Reference in New Issue
Block a user