In this appendix, we show how to use the model based on Schröder et al. to simulate the DFWM mode-locked fiber laser. The following code is based on [65] and written in Mathematica 9.0: (* This code solves the NLS equation with the split-step Fourier method based on Govind P. Agrawal in March 2005 for the NLFO book *) ClearAll["Global`*"] (*---Specify input parameters*) distance = 150.;(*Enter fiber length (in units of L_c)=*) kappa = -0.001 ;(*Normalized 2nd-dispersion: kappa=beta2*f^2*L/2): \ +ve for normal,-ve for anomalous*) sigma = 0.; (*Normalized 3rd-dispersion: sigma=beta3*f^3*L/6 *) G = 1.0;(*small signal gain of Ramam Amp: G=g*L *) Is = 1.; (*gain saturation parameter*) alpha = 0.4; (*Normalized fiber amplitude absorption coeff: alpha=l*L*) n = 2.^0.5;(*Nonlinear parameter n=') \ sqrt(L_D/L_NL)=sqrt(gamma*P0*T0^2/|beta2|) or QT: n=kappa^0.5*) (*---Specify filter parameters*) bdwidth = 2. Pi*6.; delta = 2. Pi*0.5; a = Log[Sqrt[0.95]]; perta = 0.3; pertfsr = 0.17; T = 0.2; t = Sqrt[T]; r = I*Sqrt[1 - T]; (*---Specify input parameters*) mshape = -1.;(*m=0 for sech,m>0 for super-Gaussian=*) chirp0 = 0. ;(*% input pulse chirp (default value)*) (* P = 1/(gamma*L); (P is the ref peak power); uu = A/sqrt(P); z = z0/L_c; (z0 is the real length, L_c is the cavity length); tau = f*t; (t is the time of reference traveling frame); *) (*---set simulation parameters*) nt = 2^13; (*% FFT points (powers of 2)*) Tmax = 100.; (*(half) window size*) stepno = 1*Round[20*distance*n^2];(*No.of z steps to*) dz = distance/stepno;(*step size in z*) dtau = (2.*Tmax)/nt ;(*step size in tau*) Twin = 5.; fmax = (1./(2. Tmax))*nt/2.; fwin = 5.; filterz = 0.5; plotz = 5; (*---tau and omega arrays*) tau = N[Range[-nt/2, nt/2 - 1]]*dtau ;(*temporal grid*) omega = (1. \[Pi]/Tmax)* N[Join[Range[0, nt/2 - 1], Range[-nt/2, -1]]];(*[(0:nt/2-1) (-nt/2:-1)]*) (*frequency grid*) delaytau = dtau*Range[-Round[Twin/dtau], Round[Twin/dtau]]; (*Input Field profile*) If[mshape == 0, (*;% soliton*) uu = Sech[tau]*Exp[-0.5 I*chirp0*tau^2.], If[ mshape > 0 , (* super-Gaussian*) uu = Exp[-0.5*(1. + 1. I*chirp0)*tau^(2.*mshape)], (*White noise*) uu = (RandomReal[NormalDistribution[0, 1], nt] + I*RandomReal[NormalDistribution[0, 1], nt])*Sqrt[1./2.] ] ]; temp = RotateRight[ InverseFourier[uu, FourierParameters -> {1, -1}]*(nt*dtau)/ Sqrt[2.*Pi], nt/2.]; tempomega = RotateRight[omega, nt/2]; (*---store dispersive phase shifts to speedup code*) dispersion = Exp[(-alpha + I*kappa*omega^2. + I*sigma*omega^3.)* dz];(*% nonlinear phase factor*) (*comb filter type*) (*original comb filter + BPF*) (*filtert= \ Exp[-omega^2./bdwidth^2.]*(t^2)/(1-r^2*Exp[-I*(omega+delta)+a]);*) (*perturbated comb filter + BPF*) filtert = Exp[-omega^2./bdwidth^2. - perta*Sin[0.5 *omega/pertfsr]^2]*(t^2)/(1 - r^2*Exp[-I*(omega + delta) + a]); p6 = ListLinePlot[ Transpose[{tempomega/(2. Pi), RotateRight[10.*Log10[Abs[filtert]^2], nt/2]}], PlotRange -> {{-fwin, fwin}, {-30, 10}}, Frame -> True, ImageSize -> Automatic]; (*%*********[Beginning of MAIN Loop]*********** % scheme:1/2N\[Rule]D\[Rule]1/2N;first half step nonlinear*) temp = uu* Exp[(I*Abs[uu]^2. + G/(1.0 + Abs[uu]^2./Is))*dz/2.];(*% note hhz/2*) starttime = SessionTime[]; timeused = SessionTime[] - starttime; z = 0; Monitor[ (* Realtime monitoring the simulation progress*) For[ i = 1, i <= stepno, i++, If[Round[(Mod[z, 1] - filterz )/dz] == 0 , ftemp = InverseFourier[temp, FourierParameters -> {1, -1}]*filtert* dispersion; ftemp = InverseFourier[temp, FourierParameters -> {1, -1}]*dispersion; ] uu = Fourier[ftemp, FourierParameters -> {1, -1}]; temp = uu*Exp[(I*Abs[uu]^2. + G/(1.0 + Abs[uu]^2./Is))*dz]; z = z + dz; If[Round[Mod[z, plotz ]/dz] == 0 || Round[(Mod[z, plotz ] - plotz )/dz] == 0 , timeused = SessionTime[] - starttime; p1 = ListLinePlot[Transpose[{tau, Abs[temp]^2.}], PlotRange -> {{-Twin, Twin}, All}, Frame -> True, FrameLabel -> {{Null, Null}, {Null, StringJoin[{"i = ", ToString[i], ", z = ", ToString[z]}]}} ]; ftemp0 = RotateRight[ftemp (nt*dtau)/Sqrt[2*Pi], nt/2]; p2 = ListLinePlot[ Transpose[{tempomega/(2. Pi), 10.*Log10[Abs[ftemp0]^2.]}], PlotRange -> {{-fwin, fwin}, All}, Frame -> True, FrameLabel -> {{Null, Null}, {Null, StringJoin[{" Time = ", ToString[timeused]}]}} ]; p3 = ListLinePlot[Transpose[{tau, Abs[temp]^2}], PlotRange -> {{-Tmax, Tmax}, All}, Frame -> True, FrameLabel -> {{Null, Null}, {Null, StringJoin[{"i = ", ToString[i], ", z = ", ToString[z]}]}} ]; p4 = ListLinePlot[ Transpose[{tempomega/(2. Pi), 10.*Log10[Abs[ftemp0]^2.]}], PlotRange -> {{-fmax, fmax}, All}, Frame -> True, FrameLabel -> {{Null, Null}, {Null, StringJoin[{" Time = ", ToString[timeused]}]}} ]; autocorr0 = RotateRight[ InverseFourier[ Fourier[Abs[temp]^2]*Conjugate[Fourier[Abs[temp]^2]]], nt/2]; p5 = ListLinePlot[Transpose[{tau, autocorr0/Max[autocorr0]}], PlotRange -> {{-Twin, Twin}, All}, Frame -> True]; p = GraphicsGrid[{{p1, p2}, {p3, p4}, {p5, p6}}, ImageSize -> Full] ]; ], p ] uu = temp* Exp[(I*Abs[uu]^2. + G/(1.0 + Abs[uu]^2./Is))* dz/2.];(*% Final field*) temp = RotateRight[ InverseFourier[uu, FourierParameters -> {1, -1}]*(nt*dtau)/ Sqrt[2*Pi], nt/2]; (*%Final spectrum*) (*%***************[End of MAIN Loop]***************) p1 = ListLinePlot[Transpose[{tau, Abs[uu]^2}], PlotRange -> {{-Twin, Twin}, All}, Frame -> True, FrameLabel -> {{Null, Null}, {Null, StringJoin[{"i = ", ToString[i], ", z = ", ToString[z]}]}} ]; p2 = ListLinePlot[ Transpose[{tempomega/(2. Pi), 10.*Log10[Abs[temp]^2.]}], PlotRange -> {{-fwin, fwin}, All}, Frame -> True, FrameLabel -> {{Null, Null}, {Null, StringJoin[{" Time = ", ToString[timeused]}]}} ]; p3 = ListLinePlot[Transpose[{tau, Abs[uu]^2}], PlotRange -> {{-Tmax, Tmax}, All}, Frame -> True, FrameLabel -> {{Null, Null}, {Null, StringJoin[{"i = ", ToString[i], ", z = ", ToString[z]}]}} ]; p4 = ListLinePlot[ Transpose[{tempomega/(2. Pi), 10.*Log10[Abs[temp]^2.]}], PlotRange -> {{-fmax, fmax}, All}, Frame -> True, FrameLabel -> {{Null, Null}, {Null, StringJoin[{" Time = ", ToString[timeused]}]}} ]; autocorr0 = RotateRight[ InverseFourier[Fourier[Abs[uu]^2]*Conjugate[Fourier[Abs[uu]^2]]], nt/2]; p5 = ListLinePlot[Transpose[{tau, autocorr0/Max[autocorr0]}], PlotRange -> {{-Twin, Twin}, All}, Frame -> True]; p = GraphicsGrid[{{p1, p2}, {p3, p4}, {p5, p6}}, ImageSize -> Full] (*Exporting results*) fname = "2nd_01(0.18)"; (*file name*) Export[StringJoin[{fname , "_time.dat"}], Transpose[{tau, Re[uu], Im[uu], Abs[uu]^2}]]; Export[StringJoin[{fname , "_freq.dat"}], Transpose[{tempomega/(2. Pi), Re[temp], Im[temp], Abs[temp]^2, RotateRight[Abs[filtert]^2, nt/2]}]]; Export[StringJoin[{fname , "_autocorr.dat"}], Transpose[{tau, autocorr0, autocorr0/Max[autocorr0]}]];