# -*- coding: utf-8 -*- """ Created on Sun Mar 18 00:49:54 2018 @author: chris This code solves the NLS equation with the split-step Fourier method based on Govind P. Agrawal in March 2005 for the NLFO book """ import numpy as np import matplotlib.pyplot as plt import time # ---Specify input parameters distance = 150.0 # Enter fiber length (in units of L_c)= # Normalized 2nd-dispersion: kappa=beta2*f^2*L/2): # +ve for normal,-ve for anomalous*) kappa = -0.001 sigma = 0.0 # Normalized 3rd-dispersion: sigma=beta3*f^3*L/6 G = 1.0 # small signal gain of Ramam Amp: G=g*L Is = 1.0 # gain saturation parameter alpha = 0.4 # Normalized fiber amplitude absorption coeff: alpha=l*L # Nonlinear parameter n=') # sqrt(L_D/L_NL)=sqrt(gamma*P0*T0^2/|beta2|) or QT: n=kappa^0.5 n = 2.0 ** 0.5 # ---Specify filter parameters bdwidth = 2.0 * np.pi * 6.0 delta = 2.0 * np.pi * 0.5 a = np.log(np.sqrt(0.95)) perta = 0.3 pertfsr = 0.17 T = 0.2 t = np.sqrt(T) r = 1.0j * np.sqrt(1.0 - T) # ---Specify input parameters mshape = -1.0 # m=0 for sech,m>0 for super-Gaussian= chirp0 = 0.0 # % input pulse chirp (default value) # P = 1/(gamma*L); (P is the ref peak power); # uu = A/sqrt(P); # z = z0/L_c; (z0 is the real length, L_c is the cavity length); # tau = f*t; (t is the time of reference traveling frame); # ---set simulation parameters nt = 2 ** 13 # % FFT points (powers of 2) Tmax = 100.0 # (half) window size stepno = 1 * round(20 * distance * n ** 2) # No.of z steps to dz = distance / stepno # step size in z dtau = (2.0 * Tmax) / nt # step size in tau Twin = 5.0 fmax = (1.0 / (2.0 * Tmax)) * nt / 2.0 fwin = 5.0 filterz = 0.5 plotz = 5 # ---tau and omega arrays tau = np.arange(-nt / 2.0, nt / 2.0) * dtau # temporal grid # [(0:nt/2-1) (-nt/2:-1)] omega = (np.pi / Tmax) * np.append(np.arange(0.0, nt / 2.0), np.arange(-nt / 2.0, 0.0)) # frequency grid delaytau = dtau * np.arange(-round(Twin / dtau), round(Twin / dtau) + 1) # Input Field profile if mshape == 0: # ;% soliton uu = np.exp(-0.5j * chirp0 * tau ** 2.0) / np.cosh(tau) elif mshape > 0: # super-Gaussian uu = np.exp(-0.5 * (1.0 + 1.0j * chirp0) * tau ** (2.0 * mshape)) else: # White noise uu = (np.random.randn(nt) + 1.0j * np.random.randn(nt)) * np.sqrt(0.5) temp = np.fft.fftshift(np.fft.ifft(uu) * (nt * dtau) / np.sqrt(2.0 * np.pi)) tempomega = np.fft.fftshift(omega) # ---store dispersive phase shifts to speedup code # % nonlinear phase factor dispersion = np.exp( (-alpha + 1.0j * kappa * omega ** 2.0 + 1.0j * sigma * omega ** 3.0) * dz ) # comb filter type # original comb filter + BPF # filtert = np.exp(-omega ** 2. / bdwidth ** 2.) * (t ** 2.) / \ # (1 - r ** 2 * np.exp(-1.j * (omega + delta) + a)) # perturbated comb filter + BPF filtert = ( np.exp(-omega ** 2.0 / bdwidth ** 2.0 - perta * np.sin(0.5 * omega / pertfsr) ** 2) * (t ** 2) / (1.0 - r ** 2 * np.exp(-1.0j * (omega + delta) + a)) ) plt.figure() plt.plot( tempomega / (2.0 * np.pi), np.fft.fftshift(10.0 * np.log10(np.abs(filtert) ** 2.0)) ) plt.xlim(-fwin, fwin) plt.xlim(-fwin, fwin) plt.ylim(-30.0, 10.0) plt.show() # %*********[Beginning of MAIN Loop]*********** # % scheme:1/2N\[Rule]D\[Rule]1/2N;first half step nonlinear temp = uu * np.exp( (1.0j * np.abs(uu) ** 2.0 + G / (1.0 + np.abs(uu) ** 2.0 / Is)) * dz / 2.0 ) # % note hhz/2 start_time = time.time() time_used = time.time() - start_time z = 0 # Realtime monitoring the simulation progress plt.ion() fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(3, 2) for i in range(stepno): if round((z % 1 - filterz) / dz) == 0: ftemp = np.fft.ifft(temp) * filtert * dispersion else: ftemp = np.fft.ifft(temp) * dispersion uu = np.fft.fft(ftemp) temp = uu * np.exp( (1.0j * np.abs(uu) ** 2.0 + G / (1.0 + np.abs(uu) ** 2 / Is)) * dz ) z = z + dz if round((z % plotz) / dz) == 0 or round(((z % plotz) - plotz) / dz) == 0: time_used = time.time() - start_time print(i) ax1.clear() ax1.plot(tau, np.abs(temp) ** 2.0) ax1.set_xlim([-Twin, Twin]) ax1.set_title("i = " + str(i) + ", z = " + str(z)) ftemp0 = np.fft.fftshift(ftemp * (nt * dtau) / np.sqrt(2 * np.pi)) ax2.clear() ax2.plot(tempomega / (2.0 * np.pi), 10.0 * np.log10(np.abs(ftemp0) ** 2.0)) ax2.set_xlim([-fwin, fwin]) ax2.set_title(" Time = " + str(time_used)) ax3.clear() ax3.plot(tau, np.abs(temp) ** 2) ax3.set_xlim([-Tmax, Tmax]) ax3.set_title("i = " + str(i) + ", z = " + str(z)) ax4.clear() ax4.plot(tempomega / (2.0 * np.pi), 10.0 * np.log10(np.abs(ftemp0) ** 2.0)) ax4.set_xlim([-fmax, fmax]) ax4.set_title(" Time = " + str(time_used)) autocorr0 = np.fft.fftshift( np.fft.ifft( np.fft.fft(np.abs(temp) ** 2) * np.conjugate(np.fft.fft(np.abs(temp) ** 2)) ) ) ax5.clear() ax5.plot(tau, autocorr0 / max(autocorr0)) ax5.set_xlim([-Twin, Twin]) fig.canvas.draw() # PlotRange -> {{-Twin, Twin}, All}, Frame -> True];