# -*- coding: utf-8 -*- """ Created on Sun Mar 18 00:49:54 2018 @author: chris This code solves the NLS equation with the split-step Fourier method based on Govind P. Agrawal in March 2005 for the Nonlinear fiber optics book (Appendix B) """ import numpy as np import matplotlib.pyplot as plt import time # ---Specify input parameters distance = 150. # Enter fiber length (in units of L_c)= # Normalized 2nd-dispersion: kappa=beta2*f^2*L/2): # +ve for normal,-ve for anomalous*) kappa = -0.001 sigma = 0. # Normalized 3rd-dispersion: sigma=beta3*f^3*L/6 G = 1. # small signal gain of Ramam Amp: G=g*L Is = 1. # gain saturation parameter alpha = 0.4 # Normalized fiber amplitude absorption coeff: alpha=l*L # Nonlinear parameter n=') # sqrt(L_D/L_NL)=sqrt(gamma*P0*T0^2/|beta2|) or QT: n=kappa^0.5 n = 2. ** 0.5 # ---Specify filter parameters bdwidth = 2. * np.pi * 6. delta = 2. * np.pi * 0.5 a = np.log(np.sqrt(0.95)) perta = 0.3 pertfsr = 0.17 T = 0.2 t = np.sqrt(T) r = 1.j * np.sqrt(1. - T) # ---Specify input parameters mshape = -1. # m=0 for sech,m>0 for super-Gaussian= chirp0 = 0. # % input pulse chirp (default value) # P = 1/(gamma*L); (P is the ref peak power); # uu = A/sqrt(P); # z = z0/L_c; (z0 is the real length, L_c is the cavity length); # tau = f*t; (t is the time of reference traveling frame); # ---set simulation parameters nt = 2 ** 13 # % FFT points (powers of 2) Tmax = 100. # (half) window size stepno = 1 * round(20 * distance * n ** 2) # No.of z steps to dz = distance / stepno # step size in z dtau = (2. * Tmax) / nt # step size in tau Twin = 5. fmax = (1. / (2. * Tmax)) * nt / 2. fwin = 5. filterz = 0.5 plotz = 5 # ---tau and omega arrays tau = np.arange(-nt / 2., nt / 2.) * dtau # temporal grid # [(0:nt/2-1) (-nt/2:-1)] omega = (np.pi / Tmax) * \ np.append(np.arange(0.0, nt / 2.), np.arange(-nt / 2., 0.0)) # frequency grid delaytau = dtau * np.arange(-round(Twin / dtau), round(Twin / dtau) + 1) # Input Field profile if mshape == 0: # ;% soliton uu = np.exp(-0.5j * chirp0 * tau ** 2.) / np.cosh(tau) elif mshape > 0: # super-Gaussian uu = np.exp(-0.5 * (1. + 1.j * chirp0) * tau ** (2. * mshape)) else: # White noise uu = (np.random.randn(nt) + 1.j * np.random.randn(nt)) * np.sqrt(0.5) # temp = np.fft.fftshift(np.fft.ifft(uu) * (nt * dtau) / np.sqrt(2. * np.pi)) tempomega = np.fft.fftshift(omega) # ---store dispersive phase shifts to speedup code # % nonlinear phase factor dispersion = np.exp((-alpha + 1.j * kappa * omega ** 2. + 1.j * sigma * omega ** 3.) * dz) # comb filter type # original comb filter + BPF # filtert = np.exp(-omega ** 2. / bdwidth ** 2.) * (t ** 2.) / \ # (1 - r ** 2 * np.exp(-1.j * (omega + delta) + a)) # perturbated comb filter + BPF filtert = np.exp(-omega ** 2. / bdwidth ** 2. - perta * np.sin(0.5 * omega / pertfsr) ** 2) * \ (t ** 2) / (1.0 - r ** 2 * np.exp(-1.j * (omega + delta) + a)) fig1 = plt.figure() plt.plot(tempomega / (2. * np.pi), np.fft.fftshift(10. * np.log10(np.abs(filtert) ** 2.))) plt.title("Perturbated comb filter + BPF") plt.xlim(-fwin, fwin) plt.xlim(-fwin, fwin) plt.ylim(-30., 10.) plt.show() # %*********[Beginning of MAIN Loop]*********** # % scheme:1/2N\[Rule]D\[Rule]1/2N;first half step nonlinear temp = uu * np.exp((1.j * np.abs(uu) ** 2. + G / (1.0 + np.abs(uu) ** 2. / Is)) * dz / 2.) # % note hhz/2 start_time = time.time() time_used = time.time() - start_time z = 0 # Realtime monitoring the simulation progress plt.figure() fig2, ((ax1, ax2), (ax3, ax4), (ax5, ax6)) = plt.subplots(3, 2) plt.tight_layout() abs_temp = np.abs(temp) autocorr0 = None line1, = ax1.plot(abs_temp) line2, = ax2.plot(abs_temp) line3, = ax3.plot(abs_temp) line4, = ax4.plot(abs_temp) line5, = ax5.plot(abs_temp) plt.ion() for i in range(stepno): if round((z % 1 - filterz) / dz) == 0: ftemp = np.fft.ifft(temp) * filtert * dispersion else: ftemp = np.fft.ifft(temp) * dispersion uu = np.fft.fft(ftemp) temp = uu * np.exp((1.j * np.abs(uu) ** 2. + G / (1.0 + np.abs(uu) ** 2 / Is)) * dz) z = z + dz if round((z % plotz) / dz) == 0 or round(((z % plotz) - plotz) / dz) == 0: time_used = time.time() - start_time print("Z: " + str(z)) # fig2.suptitle("i = " + str(i) + ", z = " + str(z) + " Time: " + str(time_used)) line1.set_data(tau, np.abs(temp) ** 2.) ax1.relim() ax1.autoscale_view(True, True, True) ax1.set_xlim([-Twin, Twin]) ax1.set_title("Time domain (Magnified)") ftemp0 = np.fft.fftshift(ftemp * (nt * dtau) / np.sqrt(2 * np.pi)) line2.set_data(tempomega / (2. * np.pi), 10. * np.log10(np.abs(ftemp0) ** 2.)) # ax2.relim() ax2.autoscale_view(True, True, True) ax2.set_xlim([-fwin, fwin]) ax2.set_title("Spectrum (Magnified)") line3.set_data(tau, np.abs(temp) ** 2) ax3.relim() ax3.autoscale_view(True, True, True) ax3.set_xlim([-Tmax, Tmax]) ax3.set_title("Time domain (Full Scale)") line4.set_data(tempomega / (2. * np.pi), 10. * np.log10(np.abs(ftemp0) ** 2.)) ax4.relim() ax4.autoscale_view(True, True, True) ax4.set_xlim([-fmax, fmax]) ax4.set_title("Spectrum (Full Scale)") autocorr0 = np.fft.fftshift( np.fft.ifft(np.fft.fft(np.abs(temp) ** 2) * np.conjugate(np.fft.fft(np.abs(temp) ** 2)))) line5.set_data(tau, np.abs(autocorr0) / max(np.abs(autocorr0))) ax5.relim() ax5.autoscale_view(True, True, True) ax5.set_xlim([-Twin, Twin]) ax5.set_title("Autocorrelation") plt.pause(0.1) plt.ioff() plt.show() # Exporting results fname = "result" # file name np.savetxt(fname + "_time.csv", (tau, np.real(uu), np.imag(uu), np.abs(uu) ** 2), delimiter=",") np.savetxt(fname + "_freq.csv", (tempomega / (2. * np.pi), np.real(temp), np.imag(temp), np.abs(temp) ** 2, np.fft.fftshift(np.abs(filtert) ** 2.)), delimiter=",") np.savetxt(fname + "_autocorr.csv", (tau, np.abs(autocorr0), np.abs(autocorr0) / max(np.abs(autocorr0))), delimiter=",")