210 lines
7.0 KiB
Plaintext
210 lines
7.0 KiB
Plaintext
In this appendix, we show how to use the model based on Schröder et al. to simulate the DFWM mode-locked fiber laser. The following code is based on [65] and written in Mathematica 9.0:
|
|
(* This code solves the NLS equation with the split-step Fourier method
|
|
based on Govind P. Agrawal in March 2005 for the NLFO book
|
|
*)
|
|
|
|
ClearAll["Global`*"]
|
|
|
|
(*---Specify input parameters*)
|
|
distance = 150.;(*Enter fiber length (in units of L_c)=*)
|
|
kappa = -0.001 ;(*Normalized 2nd-dispersion: kappa=beta2*f^2*L/2): \
|
|
+ve for normal,-ve for anomalous*)
|
|
sigma = 0.; (*Normalized 3rd-dispersion: sigma=beta3*f^3*L/6 *)
|
|
G = 1.0;(*small signal gain of Ramam Amp: G=g*L *)
|
|
Is = 1.; (*gain saturation parameter*)
|
|
alpha = 0.4; (*Normalized fiber amplitude absorption coeff: alpha=l*L*)
|
|
|
|
|
|
n = 2.^0.5;(*Nonlinear parameter n=') \
|
|
sqrt(L_D/L_NL)=sqrt(gamma*P0*T0^2/|beta2|) or QT: n=kappa^0.5*)
|
|
|
|
(*---Specify filter parameters*)
|
|
bdwidth = 2. Pi*6.;
|
|
delta = 2. Pi*0.5;
|
|
a = Log[Sqrt[0.95]];
|
|
perta = 0.3;
|
|
pertfsr = 0.17;
|
|
T = 0.2;
|
|
t = Sqrt[T];
|
|
r = I*Sqrt[1 - T];
|
|
|
|
(*---Specify input parameters*)
|
|
mshape = -1.;(*m=0 for sech,m>0 for super-Gaussian=*)
|
|
chirp0 = 0. ;(*% input pulse chirp (default value)*)
|
|
|
|
(*
|
|
P = 1/(gamma*L); (P is the ref peak power);
|
|
uu = A/sqrt(P);
|
|
z = z0/L_c; (z0 is the real length, L_c is the cavity length);
|
|
tau = f*t; (t is the time of reference traveling frame);
|
|
*)
|
|
|
|
(*---set simulation parameters*)
|
|
nt = 2^13; (*% FFT points (powers of 2)*)
|
|
Tmax = 100.; (*(half) window size*)
|
|
stepno = 1*Round[20*distance*n^2];(*No.of z steps to*)
|
|
dz = distance/stepno;(*step size in z*)
|
|
dtau = (2.*Tmax)/nt ;(*step size in tau*)
|
|
|
|
Twin = 5.;
|
|
fmax = (1./(2. Tmax))*nt/2.;
|
|
fwin = 5.;
|
|
|
|
filterz = 0.5;
|
|
plotz = 5;
|
|
|
|
(*---tau and omega arrays*)
|
|
tau = N[Range[-nt/2, nt/2 - 1]]*dtau ;(*temporal grid*)
|
|
omega = (1. \[Pi]/Tmax)*
|
|
N[Join[Range[0, nt/2 - 1],
|
|
Range[-nt/2, -1]]];(*[(0:nt/2-1) (-nt/2:-1)]*)
|
|
(*frequency grid*)
|
|
delaytau = dtau*Range[-Round[Twin/dtau], Round[Twin/dtau]];
|
|
|
|
|
|
|
|
(*Input Field profile*)
|
|
If[mshape == 0,
|
|
(*;% soliton*)
|
|
uu = Sech[tau]*Exp[-0.5 I*chirp0*tau^2.],
|
|
If[ mshape > 0 ,
|
|
(* super-Gaussian*)
|
|
uu = Exp[-0.5*(1. + 1. I*chirp0)*tau^(2.*mshape)],
|
|
(*White noise*)
|
|
uu = (RandomReal[NormalDistribution[0, 1], nt] +
|
|
I*RandomReal[NormalDistribution[0, 1], nt])*Sqrt[1./2.]
|
|
]
|
|
];
|
|
|
|
temp = RotateRight[
|
|
InverseFourier[uu, FourierParameters -> {1, -1}]*(nt*dtau)/
|
|
Sqrt[2.*Pi], nt/2.];
|
|
tempomega = RotateRight[omega, nt/2];
|
|
|
|
|
|
(*---store dispersive phase shifts to speedup code*)
|
|
dispersion =
|
|
Exp[(-alpha + I*kappa*omega^2. + I*sigma*omega^3.)*
|
|
dz];(*% nonlinear phase factor*)
|
|
(*comb filter type*)
|
|
(*original comb filter + BPF*)
|
|
(*filtert= \
|
|
Exp[-omega^2./bdwidth^2.]*(t^2)/(1-r^2*Exp[-I*(omega+delta)+a]);*)
|
|
(*perturbated comb filter + BPF*)
|
|
filtert = Exp[-omega^2./bdwidth^2. - perta*Sin[0.5
|
|
*omega/pertfsr]^2]*(t^2)/(1 -
|
|
r^2*Exp[-I*(omega + delta) + a]);
|
|
|
|
p6 = ListLinePlot[
|
|
Transpose[{tempomega/(2. Pi),
|
|
RotateRight[10.*Log10[Abs[filtert]^2], nt/2]}],
|
|
PlotRange -> {{-fwin, fwin}, {-30, 10}}, Frame -> True,
|
|
ImageSize -> Automatic];
|
|
|
|
(*%*********[Beginning of MAIN Loop]***********
|
|
% scheme:1/2N\[Rule]D\[Rule]1/2N;first half step nonlinear*)
|
|
temp = uu*
|
|
Exp[(I*Abs[uu]^2. + G/(1.0 + Abs[uu]^2./Is))*dz/2.];(*% note hhz/2*)
|
|
|
|
starttime = SessionTime[];
|
|
timeused = SessionTime[] - starttime;
|
|
z = 0;
|
|
|
|
Monitor[ (* Realtime monitoring the simulation progress*)
|
|
For[ i = 1, i <= stepno, i++,
|
|
If[Round[(Mod[z, 1] - filterz )/dz] == 0 ,
|
|
ftemp =
|
|
InverseFourier[temp, FourierParameters -> {1, -1}]*filtert*
|
|
dispersion;
|
|
ftemp =
|
|
InverseFourier[temp, FourierParameters -> {1, -1}]*dispersion;
|
|
]
|
|
uu = Fourier[ftemp, FourierParameters -> {1, -1}];
|
|
temp = uu*Exp[(I*Abs[uu]^2. + G/(1.0 + Abs[uu]^2./Is))*dz];
|
|
z = z + dz;
|
|
If[Round[Mod[z, plotz ]/dz] == 0 ||
|
|
Round[(Mod[z, plotz ] - plotz )/dz] == 0 ,
|
|
timeused = SessionTime[] - starttime;
|
|
p1 = ListLinePlot[Transpose[{tau, Abs[temp]^2.}],
|
|
PlotRange -> {{-Twin, Twin}, All}, Frame -> True,
|
|
FrameLabel -> {{Null, Null}, {Null,
|
|
StringJoin[{"i = ", ToString[i], ", z = ", ToString[z]}]}}
|
|
];
|
|
ftemp0 = RotateRight[ftemp (nt*dtau)/Sqrt[2*Pi], nt/2];
|
|
p2 = ListLinePlot[
|
|
Transpose[{tempomega/(2. Pi), 10.*Log10[Abs[ftemp0]^2.]}],
|
|
PlotRange -> {{-fwin, fwin}, All}, Frame -> True,
|
|
FrameLabel -> {{Null, Null}, {Null,
|
|
StringJoin[{" Time = ", ToString[timeused]}]}}
|
|
];
|
|
p3 = ListLinePlot[Transpose[{tau, Abs[temp]^2}],
|
|
PlotRange -> {{-Tmax, Tmax}, All}, Frame -> True,
|
|
FrameLabel -> {{Null, Null}, {Null,
|
|
StringJoin[{"i = ", ToString[i], ", z = ", ToString[z]}]}}
|
|
];
|
|
p4 = ListLinePlot[
|
|
Transpose[{tempomega/(2. Pi), 10.*Log10[Abs[ftemp0]^2.]}],
|
|
PlotRange -> {{-fmax, fmax}, All}, Frame -> True,
|
|
FrameLabel -> {{Null, Null}, {Null,
|
|
StringJoin[{" Time = ", ToString[timeused]}]}}
|
|
];
|
|
autocorr0 =
|
|
RotateRight[
|
|
InverseFourier[
|
|
Fourier[Abs[temp]^2]*Conjugate[Fourier[Abs[temp]^2]]], nt/2];
|
|
p5 = ListLinePlot[Transpose[{tau, autocorr0/Max[autocorr0]}],
|
|
PlotRange -> {{-Twin, Twin}, All}, Frame -> True];
|
|
p = GraphicsGrid[{{p1, p2}, {p3, p4}, {p5, p6}}, ImageSize -> Full]
|
|
];
|
|
],
|
|
p
|
|
]
|
|
|
|
uu = temp*
|
|
Exp[(I*Abs[uu]^2. + G/(1.0 + Abs[uu]^2./Is))*
|
|
dz/2.];(*% Final field*)
|
|
temp = RotateRight[
|
|
InverseFourier[uu, FourierParameters -> {1, -1}]*(nt*dtau)/
|
|
Sqrt[2*Pi], nt/2];
|
|
|
|
(*%Final spectrum*)
|
|
(*%***************[End of MAIN Loop]***************)
|
|
p1 = ListLinePlot[Transpose[{tau, Abs[uu]^2}],
|
|
PlotRange -> {{-Twin, Twin}, All}, Frame -> True,
|
|
FrameLabel -> {{Null, Null}, {Null,
|
|
StringJoin[{"i = ", ToString[i], ", z = ", ToString[z]}]}}
|
|
];
|
|
p2 = ListLinePlot[
|
|
Transpose[{tempomega/(2. Pi), 10.*Log10[Abs[temp]^2.]}],
|
|
PlotRange -> {{-fwin, fwin}, All}, Frame -> True,
|
|
FrameLabel -> {{Null, Null}, {Null,
|
|
StringJoin[{" Time = ", ToString[timeused]}]}}
|
|
];
|
|
p3 = ListLinePlot[Transpose[{tau, Abs[uu]^2}],
|
|
PlotRange -> {{-Tmax, Tmax}, All}, Frame -> True,
|
|
FrameLabel -> {{Null, Null}, {Null,
|
|
StringJoin[{"i = ", ToString[i], ", z = ", ToString[z]}]}}
|
|
];
|
|
p4 = ListLinePlot[
|
|
Transpose[{tempomega/(2. Pi), 10.*Log10[Abs[temp]^2.]}],
|
|
PlotRange -> {{-fmax, fmax}, All}, Frame -> True,
|
|
FrameLabel -> {{Null, Null}, {Null,
|
|
StringJoin[{" Time = ", ToString[timeused]}]}}
|
|
];
|
|
autocorr0 =
|
|
RotateRight[
|
|
InverseFourier[Fourier[Abs[uu]^2]*Conjugate[Fourier[Abs[uu]^2]]],
|
|
nt/2];
|
|
p5 = ListLinePlot[Transpose[{tau, autocorr0/Max[autocorr0]}],
|
|
PlotRange -> {{-Twin, Twin}, All}, Frame -> True];
|
|
p = GraphicsGrid[{{p1, p2}, {p3, p4}, {p5, p6}}, ImageSize -> Full]
|
|
|
|
(*Exporting results*)
|
|
fname = "2nd_01(0.18)"; (*file name*)
|
|
Export[StringJoin[{fname , "_time.dat"}],
|
|
Transpose[{tau, Re[uu], Im[uu], Abs[uu]^2}]];
|
|
Export[StringJoin[{fname , "_freq.dat"}],
|
|
Transpose[{tempomega/(2. Pi), Re[temp], Im[temp], Abs[temp]^2,
|
|
RotateRight[Abs[filtert]^2, nt/2]}]];
|
|
Export[StringJoin[{fname , "_autocorr.dat"}],
|
|
Transpose[{tau, autocorr0, autocorr0/Max[autocorr0]}]]; |