1st draft with ChatGPT.
This commit is contained in:
parent
47769ae07e
commit
31530815ed
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,3 +1,7 @@
|
||||
# data
|
||||
*.pdf
|
||||
*.csv
|
||||
|
||||
# ---> JupyterNotebooks
|
||||
# gitignore template for Jupyter Notebooks
|
||||
# website: http://jupyter.org/
|
||||
|
41
README.md
41
README.md
@ -1,2 +1,41 @@
|
||||
# personal-finance-database
|
||||
# Personal Finance Database
|
||||
|
||||
This project aims to manage personal finance data using a Google Sheets based database. It provides tools to import data from PDF statements, perform basic personal financial analysis, and visualize the data.
|
||||
|
||||
## Features
|
||||
|
||||
- **Data Ingestion:** Import data from Google Sheets and PDF statements.
|
||||
- **Data Processing:** Clean and preprocess the data for further analysis.
|
||||
- **Data Analysis:** Conduct basic personal financial analysis.
|
||||
- **Data Visualization:** Create simple and understandable visualizations of financial data.
|
||||
|
||||
## Installation
|
||||
|
||||
Clone this repository to your local machine.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/your-github-username/personal-finance-database.git
|
||||
```
|
||||
Navigate to the project directory.
|
||||
|
||||
```bash
|
||||
cd personal-finance-database
|
||||
```
|
||||
Install the necessary packages.
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
## Usage
|
||||
[Provide instructions on how to use the project. This should include code examples and explanations of the different components.]
|
||||
|
||||
## Contributing
|
||||
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
|
||||
|
||||
## License
|
||||
[Choose an open source license and mention it here.]
|
||||
|
||||
## Contact
|
||||
[Your Name] - [Your Email] - [Your LinkedIn/GitHub/Twitter etc.]
|
||||
|
||||
Remember to replace the placeholders with your actual details. You should also include a more detailed explanation in the "Usage" section once you have more functionality built out.
|
||||
|
0
requirements.txt
Normal file
0
requirements.txt
Normal file
0
src/__init__.py
Normal file
0
src/__init__.py
Normal file
0
src/analysis_visualization/__init__.py
Normal file
0
src/analysis_visualization/__init__.py
Normal file
0
src/analysis_visualization/data_visualization.py
Normal file
0
src/analysis_visualization/data_visualization.py
Normal file
0
src/analysis_visualization/financial_analysis.py
Normal file
0
src/analysis_visualization/financial_analysis.py
Normal file
0
src/data_ingestion/__init__.py
Normal file
0
src/data_ingestion/__init__.py
Normal file
0
src/data_ingestion/google_sheets_api.py
Normal file
0
src/data_ingestion/google_sheets_api.py
Normal file
14
src/data_ingestion/pdf_parser.py
Normal file
14
src/data_ingestion/pdf_parser.py
Normal file
@ -0,0 +1,14 @@
|
||||
from pdfminer.high_level import extract_text
|
||||
import tabula
|
||||
|
||||
class PdfParser:
|
||||
def __init__(self, file_path):
|
||||
self.file_path = file_path
|
||||
|
||||
def extract_text(self):
|
||||
text = extract_text(self.file_path)
|
||||
return text
|
||||
|
||||
def extract_table(self):
|
||||
tables = tabula.read_pdf(self.file_path, pages='all')
|
||||
return tables
|
0
src/data_processing/__init__.py
Normal file
0
src/data_processing/__init__.py
Normal file
0
src/data_processing/data_cleaner.py
Normal file
0
src/data_processing/data_cleaner.py
Normal file
0
tests/__init__.py
Normal file
0
tests/__init__.py
Normal file
0
tests/test_analysis_visualization.py
Normal file
0
tests/test_analysis_visualization.py
Normal file
16
tests/test_data_ingestion.py
Normal file
16
tests/test_data_ingestion.py
Normal file
@ -0,0 +1,16 @@
|
||||
import pytest
|
||||
from pdf_parser import PdfParser
|
||||
|
||||
def test_pdf_parser_text_extraction():
|
||||
pdf_parser = PdfParser('path_to_test_pdf')
|
||||
text = pdf_parser.extract_text()
|
||||
|
||||
assert isinstance(text, str)
|
||||
assert len(text) > 0
|
||||
|
||||
def test_pdf_parser_table_extraction():
|
||||
pdf_parser = PdfParser('path_to_test_pdf')
|
||||
tables = pdf_parser.extract_table()
|
||||
|
||||
assert isinstance(tables, list)
|
||||
assert all(isinstance(table, pd.DataFrame) for table in tables)
|
0
tests/test_data_processing.py
Normal file
0
tests/test_data_processing.py
Normal file
Loading…
Reference in New Issue
Block a user