street-fighter-ai/main/test.py

89 lines
2.4 KiB
Python
Raw Normal View History

2023-04-05 15:21:32 +00:00
import os
import time
import retro
from stable_baselines3 import PPO
from street_fighter_custom_wrapper import StreetFighterCustomWrapper
RESET_ROUND = False # Reset the round when fight is over.
RENDERING = True
2023-04-05 15:21:32 +00:00
RECORDING = True
RANDOM_ACTION = False
2023-04-05 15:21:32 +00:00
MODEL_DIR = r"trained_models/"
MOVIE_DIR = r"recordings"
MODEL_NAME = r"ppo_ryu_7000000_steps"
def make_env(game, state):
def _init():
env = retro.make(
game=game,
state=state,
use_restricted_actions=retro.Actions.FILTERED,
obs_type=retro.Observations.IMAGE
)
env = StreetFighterCustomWrapper(env, reset_round=RESET_ROUND, rendering=RENDERING)
return env
return _init
game = "StreetFighterIISpecialChampionEdition-Genesis"
env = make_env(game, state="Champion.Level12.RyuVsBison")()
# model = PPO("CnnPolicy", env)
if not RANDOM_ACTION:
2023-04-05 15:21:32 +00:00
model = PPO.load(os.path.join(MODEL_DIR, MODEL_NAME), env=env)
# obs = env.reset()
done = False
num_episodes = 30
episode_reward_sum = 0
num_victory = 0
for _ in range(num_episodes):
done = False
obs = env.reset()
2023-04-05 15:21:32 +00:00
if RECORDING:
# Start recording
movie_path = os.path.join(MOVIE_DIR, "{}.bk2".format(MODEL_NAME))
env.unwrapped.movie = retro.Movie(movie_path, retro.MovieMode.RECORD)
env.unwrapped.movie.step()
total_reward = 0
while not done:
timestamp = time.time()
if RANDOM_ACTION:
obs, reward, done, info = env.step(env.action_space.sample())
else:
action, _states = model.predict(obs)
obs, reward, done, info = env.step(action)
2023-04-05 15:21:32 +00:00
if RECORDING:
# Record the step
env.unwrapped.movie.step()
if reward != 0:
total_reward += reward
print("Reward: {:.3f}, playerHP: {}, enemyHP:{}".format(reward, info['agent_hp'], info['enemy_hp']))
2023-04-05 15:21:32 +00:00
if RECORDING:
# Stop recording
env.unwrapped.movie.close()
del env.unwrapped.movie
if info['enemy_hp'] < 0:
print("Victory!")
num_victory += 1
print("Total reward: {}".format(total_reward))
episode_reward_sum += total_reward
env.close()
print("Winning rate: {}".format(1.0 * num_victory / num_episodes))
if RANDOM_ACTION:
print("Average reward for random action: {}".format(episode_reward_sum/num_episodes))
else:
2023-04-05 15:21:32 +00:00
print("Average reward for {}: {}".format(MODEL_NAME, episode_reward_sum/num_episodes))