street-fighter-ai/001_image_stack_vision_based_reward/test.py

71 lines
1.7 KiB
Python
Raw Normal View History

2023-03-29 17:14:39 +00:00
import time
import cv2
import retro
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
from custom_cnn import CustomCNN
from street_fighter_custom_wrapper import StreetFighterCustomWrapper
def make_env(game, state):
def _init():
env = retro.RetroEnv(
game=game,
state=state,
use_restricted_actions=retro.Actions.FILTERED,
obs_type=retro.Observations.IMAGE
)
env = StreetFighterCustomWrapper(env, testing=True)
return env
return _init
game = "StreetFighterIISpecialChampionEdition-Genesis"
state_stages = [
"Champion.Level1.ChunLiVsGuile",
"Champion.Level2.ChunLiVsKen",
"Champion.Level3.ChunLiVsChunLi",
"Champion.Level4.ChunLiVsZangief",
"Champion.Level5.ChunLiVsDhalsim",
"Champion.Level6.ChunLiVsRyu",
"Champion.Level7.ChunLiVsEHonda",
"Champion.Level8.ChunLiVsBlanka",
"Champion.Level9.ChunLiVsBalrog",
"Champion.Level10.ChunLiVsVega",
"Champion.Level11.ChunLiVsSagat",
"Champion.Level12.ChunLiVsBison"
# Add other stages as necessary
]
env = make_env(game, state_stages[0])()
# Wrap the environment
env = DummyVecEnv([lambda: env])
policy_kwargs = {
'features_extractor_class': CustomCNN
}
model = PPO(
"CnnPolicy",
env,
device="cuda",
policy_kwargs=policy_kwargs,
verbose=1
)
2023-03-30 18:10:25 +00:00
model.load(r"trained_models/ppo_chunli_1296000_steps")
2023-03-29 17:14:39 +00:00
obs = env.reset()
done = False
while True:
timestamp = time.time()
action, _ = model.predict(obs)
obs, rewards, done, info = env.step(action)
env.render()
render_time = time.time() - timestamp
if render_time < 0.0111:
time.sleep(0.0111 - render_time) # Add a delay for 90 FPS
# env.close()