add cv method

This commit is contained in:
linyiLYi 2023-03-28 01:31:23 +08:00
parent 720b0488f7
commit 4a35b81937
5 changed files with 1489 additions and 7 deletions

View File

@ -0,0 +1,51 @@
import gym
# Create a custom environment for Street Fighter II
class CustomStreetFighterEnv(gym.Wrapper):
def __init__(self, env):
super(CustomStreetFighterEnv, self).__init__(env)
self.previous_health = 0
def step(self, action):
observation, reward, done, info = self.env.step(action)
# Reward function
custom_reward = self.custom_reward_function(info)
return observation, custom_reward, done, info
def reset(self):
self.previous_health = 0
return self.env.reset()
def custom_reward_function(self, info):
# Reward weights
health_weight = 1
hit_weight = 2
block_weight = 1
knockdown_weight = 5
# Retrieve relevant information from info
player_health = info["health1"]
opponent_health = info["health2"]
player_is_hit = info["is_hit1"]
opponent_is_hit = info["is_hit2"]
player_is_blocking = info["is_blocking1"]
# opponent_is_blocking = info["is_blocking2"]
player_is_knockdown = info["is_knockdown1"]
opponent_is_knockdown = info["is_knockdown2"]
# Compute reward components
health_reward = (player_health - opponent_health) * health_weight
hit_reward = hit_weight if opponent_is_hit else 0
block_reward = block_weight if player_is_blocking else 0
knockdown_reward = knockdown_weight if opponent_is_knockdown else 0
# Penalty components
hit_penalty = -hit_weight if player_is_hit else 0
knockdown_penalty = -knockdown_weight if player_is_knockdown else 0
# Calculate total custom reward
custom_reward = health_reward + hit_reward + block_reward + knockdown_reward + hit_penalty + knockdown_penalty
return custom_reward

View File

@ -11,7 +11,7 @@ retro.data.Integrations.add_custom_path(rom_directory)
env = retro.RetroEnv(
game='StreetFighterIISpecialChampionEdition-Genesis',
state='Champion.Level1.ChunLiVsGuile'
state='Champion.Level3.ChunLiVsChunLi'
)
# Champion.Level2.ChunLiVsKen
# Champion.Level3.ChunLiVsChunLi

92
train_cv_sf2_ai.py Normal file
View File

@ -0,0 +1,92 @@
import gym
import cv2
import retro
import numpy as np
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv
from stable_baselines3.common.preprocessing import is_image_space, is_image_space_channels_first
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor
import torch
import torch.nn as nn
# Custom feature extractor (CNN)
class CustomCNN(BaseFeaturesExtractor):
def __init__(self, observation_space: gym.Space):
super(CustomCNN, self).__init__(observation_space, features_dim=512)
self.cnn = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=8, stride=4, padding=0),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0),
nn.ReLU(),
nn.Flatten(),
nn.Linear(3136, self.features_dim),
nn.ReLU()
)
def forward(self, observations: torch.Tensor) -> torch.Tensor:
return self.cnn(observations)
# Custom environment wrapper for preprocessing
class CustomAtariWrapper(gym.Wrapper):
def __init__(self, env):
super().__init__(env)
# self.observation_space = gym.spaces.Box(low=0, high=255, shape=(84, 84, 1), dtype=np.uint8)
def _preprocess_observation(self, observation):
observation = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)
return np.expand_dims(observation, axis=-1)
def reset(self):
observation = self.env.reset()
return self._preprocess_observation(observation)
def step(self, action):
observation, reward, done, info = self.env.step(action)
return self._preprocess_observation(observation), reward, done, info
def make_env(game, state, seed=0):
def _init():
env = retro.RetroEnv(game=game, state=state, obs_type=retro.Observations.IMAGE)
env = CustomAtariWrapper(env)
env.seed(seed)
return env
return _init
def main():
# Set up the environment and model
game = "StreetFighterIISpecialChampionEdition-Genesis"
state_stages = [
"Champion.Level1.ChunLiVsGuile",
"Champion.Level2.ChunLiVsKen",
"Champion.Level3.ChunLiVsChunLi",
"Champion.Level4.ChunLiVsZangief",
# Add other stages as necessary
]
num_envs = 8
seed = 42
env = SubprocVecEnv([make_env(game, state_stages[0], seed=i) for i in range(num_envs)])
policy_kwargs = {
'features_extractor_class': CustomCNN
}
model = PPO(
"CnnPolicy",
env,
device="cuda",
policy_kwargs=policy_kwargs,
verbose=1
)
model.learn(total_timesteps=int(1000))
model.save("ppo_sf2_cnn")
if __name__ == "__main__":
main()
# missing reward function

View File

@ -76,12 +76,6 @@ def main():
seed=None,
)
checkpoint_path = None
if checkpoint_path is not None:
model = model.load(checkpoint_path, env)
# Set the save directory
save_dir = "trained_models"
os.makedirs(save_dir, exist_ok=True)
@ -101,3 +95,4 @@ def main():
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load Diff