new training and testing scripts based on cv

This commit is contained in:
linyiLYi 2023-03-28 15:39:30 +08:00
parent 4a35b81937
commit 7690765a4d
18 changed files with 216 additions and 49 deletions

Binary file not shown.

Binary file not shown.

3
add_custom_rom.py Normal file
View File

@ -0,0 +1,3 @@
import retro
rom_directory = "C:/Users/unitec/Documents/AIProjects/street-fighter-ai"
retro.data.Integrations.add_custom_path(rom_directory)

View File

@ -0,0 +1,17 @@
import cv2
# Convert image to grayscale
def convert_image_to_grayscale(input_img_path, output_img_path):
# Read the input image
img = cv2.imread(input_img_path)
# Convert the image to grayscale
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Save the grayscale image
cv2.imwrite(output_img_path, gray_img)
if __name__ == "__main__":
input_img_path = r"images/sf2screen_fight.png"
output_img_path = r"images/sf2screen_fight_gray.png"
convert_image_to_grayscale(input_img_path, output_img_path)

23
custom_cnn.py Normal file
View File

@ -0,0 +1,23 @@
import gym
import torch
import torch.nn as nn
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor
# Custom feature extractor (CNN)
class CustomCNN(BaseFeaturesExtractor):
def __init__(self, observation_space: gym.Space):
super(CustomCNN, self).__init__(observation_space, features_dim=512)
self.cnn = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=8, stride=4, padding=0),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0),
nn.ReLU(),
nn.Flatten(),
nn.Linear(3136, self.features_dim),
nn.ReLU()
)
def forward(self, observations: torch.Tensor) -> torch.Tensor:
return self.cnn(observations)

60
custom_sf2_cv_env.py Normal file
View File

@ -0,0 +1,60 @@
import gym
import cv2
import numpy as np
# Custom environment wrapper
class StreetFighterCustomWrapper(gym.Wrapper):
def __init__(self, env, win_template, lose_template, threshold=0.65):
super(StreetFighterCustomWrapper, self).__init__(env)
self.win_template = win_template
self.lose_template = lose_template
self.threshold = threshold
self.game_screen_gray = None
self.prev_player_health = 1.0
self.prev_opponent_health = 1.0
# Update observation space to single-channel grayscale image
self.observation_space = gym.spaces.Box(
low=0, high=255, shape=(84, 84, 1), dtype=np.uint8
)
def _preprocess_observation(self, observation):
self.game_screen_gray = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)
# Print the size of self.game_screen_gray
# print("self.game_screen_gray size: ", self.game_screen_gray.shape)
# Print the size of the observation
# print("Observation size: ", observation.shape)
resized_image = cv2.resize(self.game_screen_gray, (84, 84), interpolation=cv2.INTER_AREA)
return np.expand_dims(resized_image, axis=-1)
def _check_game_over(self):
win_res = cv2.matchTemplate(self.game_screen_gray, self.win_template, cv2.TM_CCOEFF_NORMED)
lose_res = cv2.matchTemplate(self.game_screen_gray, self.lose_template, cv2.TM_CCOEFF_NORMED)
if np.max(win_res) >= self.threshold:
return True
if np.max(lose_res) >= self.threshold:
return True
return False
def _get_reward(self):
player_health_area = self.game_screen_gray[15:20, 32:120]
oppoent_health_area = self.game_screen_gray[15:20, 136:224]
# Get health points using the number of pixels above 129.
player_health = np.sum(player_health_area > 129) / player_health_area.size
opponent_health = np.sum(oppoent_health_area > 129) / oppoent_health_area.size
reward = player_health - opponent_health
return reward
def reset(self):
observation = self.env.reset()
return self._preprocess_observation(observation)
def step(self, action):
observation, _, _, info = self.env.step(action)
custom_reward = self._get_reward()
custom_done = self._check_game_over() or False
return self._preprocess_observation(observation), custom_reward, custom_done, info

BIN
images/pattern_lose.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 363 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 235 B

BIN
images/pattern_wins.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 331 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 292 B

BIN
images/sf2screen_fight.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
images/sf2screen_win.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

62
test_cv_sf2_ai.py Normal file
View File

@ -0,0 +1,62 @@
import time
import cv2
import torch
import gym
import retro
import numpy as np
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
from custom_cnn import CustomCNN
from custom_sf2_cv_env import StreetFighterCustomWrapper
def make_env(game, state, seed=0):
def _init():
win_template = cv2.imread('images/pattern_wins_gray.png', cv2.IMREAD_GRAYSCALE)
lose_template = cv2.imread('images/pattern_lose_gray.png', cv2.IMREAD_GRAYSCALE)
env = retro.RetroEnv(game=game, state=state, obs_type=retro.Observations.IMAGE)
env = StreetFighterCustomWrapper(env, win_template, lose_template)
env.seed(seed)
return env
return _init
game = "StreetFighterIISpecialChampionEdition-Genesis"
state_stages = [
"Champion.Level1.ChunLiVsGuile",
"Champion.Level2.ChunLiVsKen",
"Champion.Level3.ChunLiVsChunLi",
"Champion.Level4.ChunLiVsZangief",
# Add other stages as necessary
]
env = make_env(game, state_stages[0])()
# Wrap the environment
env = DummyVecEnv([lambda: env])
policy_kwargs = {
'features_extractor_class': CustomCNN
}
model = PPO(
"CnnPolicy",
env,
device="cuda",
policy_kwargs=policy_kwargs,
verbose=1
)
model.load("ppo_sf2_cnn")
obs = env.reset()
done = False
while not done:
timestamp = time.time()
action, _ = model.predict(obs)
obs, rewards, done, info = env.step(action)
env.render()
render_time = time.time() - timestamp
if render_time < 0.0111:
time.sleep(0.0111 - render_time) # Add a delay for 90 FPS
env.close()

View File

@ -1,11 +1,45 @@
import time
import cv2
import torch
import gym
import retro
import numpy as np
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
def check_done(screen, win_template, lose_template, threshold=0.65):
gray_screen = cv2.cvtColor(screen, cv2.COLOR_RGB2GRAY)
win_res = cv2.matchTemplate(gray_screen, win_template, cv2.TM_CCOEFF_NORMED)
lose_res = cv2.matchTemplate(gray_screen, lose_template, cv2.TM_CCOEFF_NORMED)
if np.max(win_res) >= threshold:
print("You win!")
return True
if np.max(lose_res) >= threshold:
print("You lose!")
return True
def get_health_points(screen):
# Get the player's HP
gray_screen = cv2.cvtColor(screen, cv2.COLOR_RGB2GRAY)
player_health_area = gray_screen[15:20, 32:120]
oppoent_health_area = gray_screen[15:20, 136:224]
# Get health points using the number of pixels above 129.
player_health = np.sum(player_health_area > 129) / player_health_area.size
oppoent_health = np.sum(oppoent_health_area > 129) / oppoent_health_area.size
# Helper function to get the max and min pixel values.
# max_pixel = np.max(player_health_area)
# min_pixel = np.min(player_health_area)
# avg = (max_pixel + min_pixel) / 2
return player_health, oppoent_health
rom_directory = "C:/Users/unitec/Documents/AIProjects/street-fighter-ai"
retro.data.Integrations.add_custom_path(rom_directory)
@ -13,26 +47,31 @@ env = retro.RetroEnv(
game='StreetFighterIISpecialChampionEdition-Genesis',
state='Champion.Level3.ChunLiVsChunLi'
)
# Champion.Level1.ChunLiVsGuile
# Champion.Level2.ChunLiVsKen
# Champion.Level3.ChunLiVsChunLi
env = DummyVecEnv([lambda: env])
# env = DummyVecEnv([lambda: env])
model = PPO("CnnPolicy", env)
model.load("trained_models/ppo_sf2_chunli_final")
obs = env.reset()
while True:
game_over = False
win_template = cv2.imread('images/pattern_wins_gray.png', cv2.IMREAD_GRAYSCALE)
lose_template = cv2.imread('images/pattern_lose_gray.png', cv2.IMREAD_GRAYSCALE)
while not game_over:
timestamp = time.time()
action, _states = model.predict(obs)
obs, rewards, done, info = env.step(action)
env.render()
screen = env.unwrapped.get_screen()
get_health_points(screen)
game_over = check_done(screen, win_template, lose_template)
render_time = time.time() - timestamp
if render_time < 0.0111:
time.sleep(0.0111 - render_time) # Add a delay for 90 FPS
if done:
break
obs = env.reset()
env.close()

View File

@ -5,57 +5,23 @@ import numpy as np
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv
from stable_baselines3.common.preprocessing import is_image_space, is_image_space_channels_first
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor
import torch
import torch.nn as nn
# Custom feature extractor (CNN)
class CustomCNN(BaseFeaturesExtractor):
def __init__(self, observation_space: gym.Space):
super(CustomCNN, self).__init__(observation_space, features_dim=512)
self.cnn = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=8, stride=4, padding=0),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0),
nn.ReLU(),
nn.Flatten(),
nn.Linear(3136, self.features_dim),
nn.ReLU()
)
def forward(self, observations: torch.Tensor) -> torch.Tensor:
return self.cnn(observations)
# Custom environment wrapper for preprocessing
class CustomAtariWrapper(gym.Wrapper):
def __init__(self, env):
super().__init__(env)
# self.observation_space = gym.spaces.Box(low=0, high=255, shape=(84, 84, 1), dtype=np.uint8)
def _preprocess_observation(self, observation):
observation = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)
return np.expand_dims(observation, axis=-1)
def reset(self):
observation = self.env.reset()
return self._preprocess_observation(observation)
def step(self, action):
observation, reward, done, info = self.env.step(action)
return self._preprocess_observation(observation), reward, done, info
from custom_cnn import CustomCNN
from custom_sf2_cv_env import StreetFighterCustomWrapper
def make_env(game, state, seed=0):
def _init():
win_template = cv2.imread('images/pattern_wins_gray.png', cv2.IMREAD_GRAYSCALE)
lose_template = cv2.imread('images/pattern_lose_gray.png', cv2.IMREAD_GRAYSCALE)
env = retro.RetroEnv(game=game, state=state, obs_type=retro.Observations.IMAGE)
env = CustomAtariWrapper(env)
env = StreetFighterCustomWrapper(env, win_template, lose_template)
env.seed(seed)
return env
return _init
def main():
# Set up the environment and model
game = "StreetFighterIISpecialChampionEdition-Genesis"
state_stages = [
@ -67,12 +33,11 @@ def main():
]
num_envs = 8
seed = 42
env = SubprocVecEnv([make_env(game, state_stages[0], seed=i) for i in range(num_envs)])
policy_kwargs = {
'features_extractor_class': CustomCNN
'features_extractor_class': CustomCNN
}
model = PPO(
@ -88,5 +53,3 @@ def main():
if __name__ == "__main__":
main()
# missing reward function