diff --git a/__pycache__/custom_cnn.cpython-38.pyc b/__pycache__/custom_cnn.cpython-38.pyc new file mode 100644 index 0000000..9adaf11 Binary files /dev/null and b/__pycache__/custom_cnn.cpython-38.pyc differ diff --git a/__pycache__/custom_sf2_cv_env.cpython-38.pyc b/__pycache__/custom_sf2_cv_env.cpython-38.pyc new file mode 100644 index 0000000..e8de06b Binary files /dev/null and b/__pycache__/custom_sf2_cv_env.cpython-38.pyc differ diff --git a/add_custom_rom.py b/add_custom_rom.py new file mode 100644 index 0000000..e82edd3 --- /dev/null +++ b/add_custom_rom.py @@ -0,0 +1,3 @@ +import retro +rom_directory = "C:/Users/unitec/Documents/AIProjects/street-fighter-ai" +retro.data.Integrations.add_custom_path(rom_directory) \ No newline at end of file diff --git a/convert_image_to_grayscale.py b/convert_image_to_grayscale.py new file mode 100644 index 0000000..9f36bc2 --- /dev/null +++ b/convert_image_to_grayscale.py @@ -0,0 +1,17 @@ +import cv2 + +# Convert image to grayscale +def convert_image_to_grayscale(input_img_path, output_img_path): + # Read the input image + img = cv2.imread(input_img_path) + + # Convert the image to grayscale + gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) + + # Save the grayscale image + cv2.imwrite(output_img_path, gray_img) + +if __name__ == "__main__": + input_img_path = r"images/sf2screen_fight.png" + output_img_path = r"images/sf2screen_fight_gray.png" + convert_image_to_grayscale(input_img_path, output_img_path) \ No newline at end of file diff --git a/custom_cnn.py b/custom_cnn.py new file mode 100644 index 0000000..bad8a1b --- /dev/null +++ b/custom_cnn.py @@ -0,0 +1,23 @@ +import gym +import torch +import torch.nn as nn +from stable_baselines3.common.torch_layers import BaseFeaturesExtractor + +# Custom feature extractor (CNN) +class CustomCNN(BaseFeaturesExtractor): + def __init__(self, observation_space: gym.Space): + super(CustomCNN, self).__init__(observation_space, features_dim=512) + self.cnn = nn.Sequential( + nn.Conv2d(1, 32, kernel_size=8, stride=4, padding=0), + nn.ReLU(), + nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0), + nn.ReLU(), + nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0), + nn.ReLU(), + nn.Flatten(), + nn.Linear(3136, self.features_dim), + nn.ReLU() + ) + + def forward(self, observations: torch.Tensor) -> torch.Tensor: + return self.cnn(observations) \ No newline at end of file diff --git a/custom_sf2_cv_env.py b/custom_sf2_cv_env.py new file mode 100644 index 0000000..017605b --- /dev/null +++ b/custom_sf2_cv_env.py @@ -0,0 +1,60 @@ +import gym +import cv2 +import numpy as np + +# Custom environment wrapper +class StreetFighterCustomWrapper(gym.Wrapper): + def __init__(self, env, win_template, lose_template, threshold=0.65): + super(StreetFighterCustomWrapper, self).__init__(env) + self.win_template = win_template + self.lose_template = lose_template + self.threshold = threshold + + self.game_screen_gray = None + + self.prev_player_health = 1.0 + self.prev_opponent_health = 1.0 + + # Update observation space to single-channel grayscale image + self.observation_space = gym.spaces.Box( + low=0, high=255, shape=(84, 84, 1), dtype=np.uint8 + ) + + def _preprocess_observation(self, observation): + self.game_screen_gray = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY) + # Print the size of self.game_screen_gray + # print("self.game_screen_gray size: ", self.game_screen_gray.shape) + # Print the size of the observation + # print("Observation size: ", observation.shape) + resized_image = cv2.resize(self.game_screen_gray, (84, 84), interpolation=cv2.INTER_AREA) + return np.expand_dims(resized_image, axis=-1) + + def _check_game_over(self): + win_res = cv2.matchTemplate(self.game_screen_gray, self.win_template, cv2.TM_CCOEFF_NORMED) + lose_res = cv2.matchTemplate(self.game_screen_gray, self.lose_template, cv2.TM_CCOEFF_NORMED) + if np.max(win_res) >= self.threshold: + return True + if np.max(lose_res) >= self.threshold: + return True + return False + + def _get_reward(self): + player_health_area = self.game_screen_gray[15:20, 32:120] + oppoent_health_area = self.game_screen_gray[15:20, 136:224] + + # Get health points using the number of pixels above 129. + player_health = np.sum(player_health_area > 129) / player_health_area.size + opponent_health = np.sum(oppoent_health_area > 129) / oppoent_health_area.size + + reward = player_health - opponent_health + return reward + + def reset(self): + observation = self.env.reset() + return self._preprocess_observation(observation) + + def step(self, action): + observation, _, _, info = self.env.step(action) + custom_reward = self._get_reward() + custom_done = self._check_game_over() or False + return self._preprocess_observation(observation), custom_reward, custom_done, info \ No newline at end of file diff --git a/images/pattern_lose.png b/images/pattern_lose.png new file mode 100644 index 0000000..4fc1190 Binary files /dev/null and b/images/pattern_lose.png differ diff --git a/images/pattern_lose_gray.png b/images/pattern_lose_gray.png new file mode 100644 index 0000000..3414653 Binary files /dev/null and b/images/pattern_lose_gray.png differ diff --git a/images/pattern_wins.png b/images/pattern_wins.png new file mode 100644 index 0000000..2cfe3de Binary files /dev/null and b/images/pattern_wins.png differ diff --git a/images/pattern_wins_gray.png b/images/pattern_wins_gray.png new file mode 100644 index 0000000..6527cc7 Binary files /dev/null and b/images/pattern_wins_gray.png differ diff --git a/images/sf2screen_fight.png b/images/sf2screen_fight.png new file mode 100644 index 0000000..744470a Binary files /dev/null and b/images/sf2screen_fight.png differ diff --git a/images/sf2screen_fight_gray.png b/images/sf2screen_fight_gray.png new file mode 100644 index 0000000..dfc943d Binary files /dev/null and b/images/sf2screen_fight_gray.png differ diff --git a/images/sf2screen_fight_labeled.png b/images/sf2screen_fight_labeled.png new file mode 100644 index 0000000..b4be2f4 Binary files /dev/null and b/images/sf2screen_fight_labeled.png differ diff --git a/images/sf2screen_win.png b/images/sf2screen_win.png new file mode 100644 index 0000000..2eea215 Binary files /dev/null and b/images/sf2screen_win.png differ diff --git a/images/sf2screen_you_lose.png b/images/sf2screen_you_lose.png new file mode 100644 index 0000000..3f37379 Binary files /dev/null and b/images/sf2screen_you_lose.png differ diff --git a/test_cv_sf2_ai.py b/test_cv_sf2_ai.py new file mode 100644 index 0000000..fc29a8a --- /dev/null +++ b/test_cv_sf2_ai.py @@ -0,0 +1,62 @@ +import time + +import cv2 +import torch +import gym +import retro +import numpy as np +from stable_baselines3 import PPO +from stable_baselines3.common.vec_env import DummyVecEnv + +from custom_cnn import CustomCNN +from custom_sf2_cv_env import StreetFighterCustomWrapper + +def make_env(game, state, seed=0): + def _init(): + win_template = cv2.imread('images/pattern_wins_gray.png', cv2.IMREAD_GRAYSCALE) + lose_template = cv2.imread('images/pattern_lose_gray.png', cv2.IMREAD_GRAYSCALE) + env = retro.RetroEnv(game=game, state=state, obs_type=retro.Observations.IMAGE) + env = StreetFighterCustomWrapper(env, win_template, lose_template) + env.seed(seed) + return env + return _init + +game = "StreetFighterIISpecialChampionEdition-Genesis" +state_stages = [ + "Champion.Level1.ChunLiVsGuile", + "Champion.Level2.ChunLiVsKen", + "Champion.Level3.ChunLiVsChunLi", + "Champion.Level4.ChunLiVsZangief", + # Add other stages as necessary +] + +env = make_env(game, state_stages[0])() + +# Wrap the environment +env = DummyVecEnv([lambda: env]) + +policy_kwargs = { + 'features_extractor_class': CustomCNN +} +model = PPO( + "CnnPolicy", + env, + device="cuda", + policy_kwargs=policy_kwargs, + verbose=1 +) +model.load("ppo_sf2_cnn") + +obs = env.reset() +done = False + +while not done: + timestamp = time.time() + action, _ = model.predict(obs) + obs, rewards, done, info = env.step(action) + env.render() + render_time = time.time() - timestamp + if render_time < 0.0111: + time.sleep(0.0111 - render_time) # Add a delay for 90 FPS + +env.close() \ No newline at end of file diff --git a/test_street_fighter_ai.py b/test_street_fighter_ai.py index c257506..1898d61 100644 --- a/test_street_fighter_ai.py +++ b/test_street_fighter_ai.py @@ -1,11 +1,45 @@ import time +import cv2 import torch import gym import retro +import numpy as np + from stable_baselines3 import PPO from stable_baselines3.common.vec_env import DummyVecEnv + +def check_done(screen, win_template, lose_template, threshold=0.65): + gray_screen = cv2.cvtColor(screen, cv2.COLOR_RGB2GRAY) + win_res = cv2.matchTemplate(gray_screen, win_template, cv2.TM_CCOEFF_NORMED) + lose_res = cv2.matchTemplate(gray_screen, lose_template, cv2.TM_CCOEFF_NORMED) + + if np.max(win_res) >= threshold: + print("You win!") + return True + + if np.max(lose_res) >= threshold: + print("You lose!") + return True + +def get_health_points(screen): + # Get the player's HP + gray_screen = cv2.cvtColor(screen, cv2.COLOR_RGB2GRAY) + player_health_area = gray_screen[15:20, 32:120] + oppoent_health_area = gray_screen[15:20, 136:224] + + # Get health points using the number of pixels above 129. + player_health = np.sum(player_health_area > 129) / player_health_area.size + oppoent_health = np.sum(oppoent_health_area > 129) / oppoent_health_area.size + + # Helper function to get the max and min pixel values. + # max_pixel = np.max(player_health_area) + # min_pixel = np.min(player_health_area) + # avg = (max_pixel + min_pixel) / 2 + + return player_health, oppoent_health + rom_directory = "C:/Users/unitec/Documents/AIProjects/street-fighter-ai" retro.data.Integrations.add_custom_path(rom_directory) @@ -13,26 +47,31 @@ env = retro.RetroEnv( game='StreetFighterIISpecialChampionEdition-Genesis', state='Champion.Level3.ChunLiVsChunLi' ) +# Champion.Level1.ChunLiVsGuile # Champion.Level2.ChunLiVsKen # Champion.Level3.ChunLiVsChunLi - -env = DummyVecEnv([lambda: env]) +# env = DummyVecEnv([lambda: env]) model = PPO("CnnPolicy", env) model.load("trained_models/ppo_sf2_chunli_final") obs = env.reset() -while True: +game_over = False + +win_template = cv2.imread('images/pattern_wins_gray.png', cv2.IMREAD_GRAYSCALE) +lose_template = cv2.imread('images/pattern_lose_gray.png', cv2.IMREAD_GRAYSCALE) + +while not game_over: timestamp = time.time() action, _states = model.predict(obs) obs, rewards, done, info = env.step(action) env.render() + screen = env.unwrapped.get_screen() + get_health_points(screen) + game_over = check_done(screen, win_template, lose_template) render_time = time.time() - timestamp if render_time < 0.0111: time.sleep(0.0111 - render_time) # Add a delay for 90 FPS - if done: - break - obs = env.reset() env.close() \ No newline at end of file diff --git a/train_cv_sf2_ai.py b/train_cv_sf2_ai.py index 68e0968..5036a19 100644 --- a/train_cv_sf2_ai.py +++ b/train_cv_sf2_ai.py @@ -5,57 +5,23 @@ import numpy as np from stable_baselines3 import PPO from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv from stable_baselines3.common.preprocessing import is_image_space, is_image_space_channels_first -from stable_baselines3.common.torch_layers import BaseFeaturesExtractor import torch import torch.nn as nn -# Custom feature extractor (CNN) -class CustomCNN(BaseFeaturesExtractor): - def __init__(self, observation_space: gym.Space): - super(CustomCNN, self).__init__(observation_space, features_dim=512) - self.cnn = nn.Sequential( - nn.Conv2d(1, 32, kernel_size=8, stride=4, padding=0), - nn.ReLU(), - nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0), - nn.ReLU(), - nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0), - nn.ReLU(), - nn.Flatten(), - nn.Linear(3136, self.features_dim), - nn.ReLU() - ) - - def forward(self, observations: torch.Tensor) -> torch.Tensor: - return self.cnn(observations) - -# Custom environment wrapper for preprocessing -class CustomAtariWrapper(gym.Wrapper): - def __init__(self, env): - super().__init__(env) - # self.observation_space = gym.spaces.Box(low=0, high=255, shape=(84, 84, 1), dtype=np.uint8) - - def _preprocess_observation(self, observation): - observation = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY) - return np.expand_dims(observation, axis=-1) - - def reset(self): - observation = self.env.reset() - return self._preprocess_observation(observation) - - def step(self, action): - observation, reward, done, info = self.env.step(action) - return self._preprocess_observation(observation), reward, done, info +from custom_cnn import CustomCNN +from custom_sf2_cv_env import StreetFighterCustomWrapper def make_env(game, state, seed=0): def _init(): + win_template = cv2.imread('images/pattern_wins_gray.png', cv2.IMREAD_GRAYSCALE) + lose_template = cv2.imread('images/pattern_lose_gray.png', cv2.IMREAD_GRAYSCALE) env = retro.RetroEnv(game=game, state=state, obs_type=retro.Observations.IMAGE) - env = CustomAtariWrapper(env) + env = StreetFighterCustomWrapper(env, win_template, lose_template) env.seed(seed) return env return _init def main(): - # Set up the environment and model game = "StreetFighterIISpecialChampionEdition-Genesis" state_stages = [ @@ -67,12 +33,11 @@ def main(): ] num_envs = 8 - seed = 42 env = SubprocVecEnv([make_env(game, state_stages[0], seed=i) for i in range(num_envs)]) policy_kwargs = { - 'features_extractor_class': CustomCNN + 'features_extractor_class': CustomCNN } model = PPO( @@ -88,5 +53,3 @@ def main(): if __name__ == "__main__": main() - -# missing reward function \ No newline at end of file