
Model: GPT-4 

Hi, I would like to discuss with you about the issues I encountered in my visual 

based reinforcement learning project. I'm trying to design a vision based AI 

agent to play Street Fighter II under the gym-retro environment. The AI agent 

receives an 3-channel image matrix as input, which is actually 3 consecutive 

game frames grayed out and then stacked up, which then go through the 

default "CnnPolicy" of stable-baselines library. The purpose is to enable the 

agent to learning the temporal information as well as the spatial information. 

The reward function is based on the health points of the agent and its 

opponent. The reinforcement policy is based on PPO from stable-baselines 

library. The problem I encountered is that the agent doesn't seem to be 

improving during training. I printed out the average reward, but it's not 

improving much as the training goes on. Perhaps there is some important 

issue that is overlooked. I hope our discussion could help me identify those 

problems. 

It's great to see that you're working on a visual-based reinforcement learning 

project. From your description, it appears that you have set up a reasonable 

framework for training the AI agent. However, there could be several reasons 

why the agent is not improving during training. Let's discuss some potential 

issues and possible solutions: 

Insufficient training time: Training a reinforcement learning agent, 

especially with vision-based inputs, can take a considerable amount of 

time. Make sure you allow the model enough time to train before 

evaluating its performance. 

Hyperparameter tuning: PPO, like most RL algorithms, can be sensitive to 

hyperparameters. You might want to experiment with different learning 

rates, number of training iterations, batch sizes, and other 

hyperparameters to find the best combination for your specific problem. 

Reward shaping: It's possible that the reward function you're using might 

not be providing enough guidance for the agent to learn effectively. 

Consider experimenting with different reward functions or incorporating 

additional rewards for intermediate goals (e.g., successful attacks, 

blocking enemy moves, etc.) to help guide the agent's learning process. 

Frame stacking: You mentioned using three consecutive grayed-out 

frames as input to the agent. While this provides some temporal 

information, it might not be sufficient for the agent to learn complex 

dynamics. You can try increasing the number of stacked frames or 

experiment with other methods like frame skipping or using a recurrent 

neural network (RNN) layer to better capture temporal dependencies. 

Exploration vs. exploitation: Balancing exploration and exploitation is 

essential in reinforcement learning. Make sure your agent has a suitable 

exploration strategy (e.g., using an epsilon-greedy or entropy-based 

approach) to encourage it to explore different actions and learn from 

them. 

Preprocessing: Experiment with different preprocessing techniques for the 

input images, such as normalization, cropping, or resizing. This may help 

the agent learn more efficiently by reducing the input dimensionality or 

highlighting relevant features. 

Transfer learning: To speed up training and potentially improve 

performance, you can initialize your model with weights from a pre-trained 

network, such as one trained on similar games or even on general image 

classification tasks. 

Monitor training progress: Use tools like TensorBoard or custom logging to 

visualize training metrics, such as loss, rewards, and actions taken by the 

agent. This can help you identify issues and debug your model more 

effectively. 

I hope these suggestions help you identify potential problems and improve 

your AI agent's performance in the Street Fighter II environment. Remember 

that reinforcement learning can be challenging, and it often takes multiple 

iterations and experiments to achieve the desired results. Good luck! 

Among all the things that you have mentioned, which part do you think would 

be the most effective to address my problem of the agent not improving 

during training? 

It's difficult to pinpoint a single aspect that would be the most effective in 

addressing your agent's lack of improvement during training, as the specific 

issues can vary depending on the problem and the setup. However, I can 

suggest a priority list to help you address potential issues systematically: 

Hyperparameter tuning: Start by experimenting with different 

hyperparameters for the PPO algorithm, as these can have a significant 

impact on the learning process. Adjust the learning rate, batch size, 

number of training iterations, and other relevant parameters. 

Reward shaping: Revise your reward function to provide more informative 

guidance to the agent. Adding intermediate goals or more granular 

rewards can help the agent learn more effectively. 

Exploration vs. exploitation: Ensure that your agent has a suitable 

exploration strategy. Adjusting the exploration parameters (e.g., using an 

epsilon-greedy or entropy-based approach) can help the agent explore 

different actions and learn from them. 

Insufficient training time: Make sure you allow the model enough time to 

train before evaluating its performance. Visual-based RL tasks can take a 

considerable amount of time to learn effectively. 

Frame stacking and temporal information: Experiment with increasing the 

number of stacked frames or consider using frame skipping or a recurrent 

neural network (RNN) layer to better capture temporal dependencies. 

Preprocessing: Try different preprocessing techniques for the input 

images (e.g., normalization, cropping, resizing) to improve the agent's 

learning efficiency. 

Transfer learning: If you still face difficulties, consider initializing your 

model with weights from a pre-trained network, which can speed up 

training and potentially improve performance. 

Monitor training progress: Use visualization tools like TensorBoard or 

custom logging to track training metrics and identify issues during the 

training process. 

Keep in mind that reinforcement learning can be quite challenging, and it may 

require multiple iterations and experiments to achieve the desired results. By 

addressing these aspects systematically, you can gradually improve your 

agent's performance and identify the most effective adjustments for your 

specific problem. 

Regarding the first and third point in the priority list, I actually used the 

"optuna" library to help me find best suite of parameters, but among the 10 

different parameter sets, none of them performed well, so I assume that was 

not the case. For point 2, I designed the reward to be (opponent_hp_lost - 

agent_hp_lost) at each frame, so that the agent could always receive some 

good information during its fight besides the final reward. The final reward is 

based on the win/lose and the remained health points. If agent wins, it 

receives a reward equal to its remaining hp. If the agent loses, the penalty 

equals to the hp of its opponent. I think this is a good design, too, as it not 

only takes into the win/lose of the game, but also takes in the hp information. 

The fourth point, training time, is not an issue. I actually trained for 8 million 

timesteps yet the agent still does not improve. Now I am doubting whether 

the agent is learning the game screen information effectively and whether it is 

using a good training mechnism. Would the self fighting ideas behind 

AlphaGo be a good idea for this Street Fighter II situation? 

Based on the additional information you've provided, it seems that you've 

already tried addressing hyperparameter tuning, reward shaping, and training 

time. Given this, you might want to consider experimenting with the agent's 

learning of game screen information and alternative training mechanisms. 

Regarding the self-play approach used by AlphaGo, it could indeed be a 

promising idea for the Street Fighter II environment. In self-play, the agent 

competes against previous versions of itself, improving over time by learning 

from its own mistakes and successes. This method has been successful in 

various two-player games with well-defined rules and relatively small action 

spaces, such as Go and chess. 

However, implementing self-play in a fighting game like Street Fighter II might 

be more challenging due to the following reasons: 

Larger and more complex action space: Street Fighter II has a larger action 

space with various combinations of moves, making it more difficult for the 

agent to learn optimal strategies. 

Real-time gameplay: Unlike turn-based games like Go, Street Fighter II is a 

real-time game, which means that the agent must make decisions and 

react quickly. This can pose additional challenges when implementing self- 

play. 

Temporal dependencies: Street Fighter II has complex temporal 

dependencies due to the real-time nature of the game, requiring the agent 

to learn from sequences of actions and reactions. This might necessitate 

using recurrent neural networks (RNNs) or other methods to capture 

temporal information more effectively. 

Despite these challenges, the self-play approach might still be worth trying 

for your project. Here are some suggestions for implementing self-play in the 

Street Fighter II environment: 

Use an RNN layer or other methods to better capture temporal 

dependencies, as this can be crucial for learning effective strategies in 

real-time games. 

Implement a curriculum learning approach, where the agent first learns to 

master simpler tasks (e.g., basic moves) before moving on to more 

complex strategies. 

Regularly update the opponent version in self-play to ensure the agent 

faces increasingly challenging opponents as it improves. 

Consider incorporating other techniques, such as imitation learning, where 

the agent learns from expert demonstrations (e.g., recorded gameplay of 

skilled human players). This can help bootstrap the agent's learning 

process and provide a solid foundation for further improvement through 

self-play. 

Remember that reinforcement learning can be challenging, and it might take 

multiple iterations and experiments to achieve the desired results. Good luck 

with your project! 

Please help me learning some important concepts regarding reinforcement 

learning. What is PPO policy, is it effective in real-time fighting game play 

situation? 

Proximal Policy Optimization (PPO) is a popular reinforcement learning 

algorithm developed by OpenAI, which combines the benefits of trust region 

policy optimization (TRPO) with the simplicity of standard policy gradient 

methods. PPO is an on-policy algorithm designed to address the challenges 

associated with the trade-off between exploration and exploitation in 

reinforcement learning. 

The main idea behind PPO is to limit the policy update at each iteration to 

ensure that the new policy does not deviate too far from the old one, which 

prevents the algorithm from taking overly large steps that could lead to 

unstable learning. This is achieved by introducing a clipped objective 

function, which encourages smaller updates while maintaining the benefits of 

the trust region approach. 

PPO has gained popularity due to its simplicity, robustness, and effectiveness 

across a wide range of tasks, including continuous control, robotic 

manipulation, and game playing. 

Regarding its applicability to real-time fighting games like Street Fighter II, 

PPO can potentially be effective. However, there are some specific challenges 

in this context: 

Complex action space: The action space in fighting games can be quite 

large, with many combinations of moves and actions. This might require 

careful tuning of the algorithm's hyperparameters and exploration 

strategies. 

Real-time gameplay: In contrast to turn-based games, real-time games 

require quick decision-making and reactions from the agent. This can add 

to the complexity of learning an effective policy. 

Temporal dependencies: The real-time nature of fighting games entails 

complex temporal dependencies, as the agent must learn sequences of 

actions and reactions. This may require more sophisticated approaches to 

capture temporal information, such as using recurrent neural networks 

(RNNs) or LSTM layers in the policy network. 

Despite these challenges, PPO can still be used to train an AI agent to play 

real-time fighting games like Street Fighter II. The key to success lies in 

addressing the challenges mentioned above, such as experimenting with 

different network architectures, exploration strategies, and reward shaping. 

It's also crucial to leverage domain-specific knowledge about the game, 

including the mechanics, character moves, and strategies, to help guide the 

agent's learning process. 

I'm curious about this: if I discuss these technical problems with you in 

Chinese, will you still provide the same level of answers? What if there are 

some terms that you cannot accurately understand in Chinese? 

As an AI language model, I am capable of understanding and responding in 

multiple languages, including Chinese. I can certainly try to provide answers 

to your technical questions in Chinese. However, the quality of the responses 

may depend on the accuracy and clarity of the provided translations for 

specific technical terms. In case I am unable to understand a specific term, I 

would try my best to infer the meaning from the context, or I might ask for 

clarification to provide an accurate response. 

If you have any questions in Chinese, feel free to ask, and I will do my best to 

assist you. 

你能用中文讲解一下PPO策略吗？ 

当然可以！PPO（Proximal Policy Optimization，近端策略优化）是由OpenAI开 

发的一种流行的强化学习算法，它结合了信任区域策略优化（Trust Region 

Policy Optimization，TRPO）的优点和标准策略梯度方法的简单性。PPO是一 

种在线策略算法，旨在解决强化学习中探索与利用权衡的挑战。 

PPO的主要思想是在每次迭代中限制策略更新，以确保新策略不会偏离旧策略太 

远，从而防止算法采取过大的步骤导致学习不稳定。这是通过引入一个剪裁的目 

标函数来实现的，该函数鼓励较小的更新，同时保持信任区域方法的优势。 

PPO因其简单性、稳健性和在各种任务（包括连续控制、机器人操控和游戏玩 

法）中的有效性而受到欢迎。 

关于将PPO应用于实时格斗游戏（如《街头霸王II》）的场景，PPO有可能是有 

效的。然而，在这种情况下，有一些特定的挑战： 

复杂的动作空间：格斗游戏中的动作空间可能相当大，有许多组合的动作和 

操作。这可能需要对算法的超参数和探索策略进行精细调整。 

实时游戏：与回合制游戏不同，实时游戏需要代理快速做出决策和反应。这 

会增加学习有效策略的复杂性。 

时间依赖性：实时格斗游戏涉及复杂的时间依赖性，因为代理需要学习动作 

和反应的序列。这可能需要使用更复杂的方法来更有效地捕捉时间信息，例 

如在策略网络中使用循环神经网络（RNN）或LSTM层。 

尽管存在这些挑战，PPO仍可用于训练AI代理以玩《街头霸王II》等实时格斗游 

戏。成功的关键在于解决上述挑战，如尝试不同的网络架构、探索策略和奖励塑 

造。同时，利用关于游戏的领域知识（包括游戏机制、角色动作和策略）来指导 

代理的学习过程至关重要。 


