
Model: GPT-4

Hi, I have a tensorboard log file which was displayed correctly. However, it

cannot be displayed and says "No dashboards are active for the current data

set" after I changed its path. How can I see it?

It seems like TensorBoard is unable to find the log file after you changed its

path. To resolve this issue, you can follow these steps:

Make sure the log file is present in the new path you specified.

Check if the new path is correctly specified when you launch TensorBoard.

The command should look like this:

css Copy code

tensorboard --logdir /path/ to /your/new/log/directory

Replace with the correct path to the /path/to/your/new/log/directory

folder containing your log file.

If the issue persists, try clearing the TensorBoard cache. This can

sometimes resolve problems when the log file is not displayed correctly.

To clear the cache, run:

sql Copy code

tensorboard dev delete --experiment_id EXPERIMENT_ID

Replace with the experiment ID of the TensorBoard run you EXPERIMENT_ID

want to delete. You can find this ID in the TensorBoard URL or by running

. tensorboard dev list

After clearing the cache, launch TensorBoard again with the correct log

directory path:

css Copy code

tensorboard --logdir /path/ to /your/new/log/directory

Open TensorBoard in your web browser by navigating to the provided URL,

typically . http://localhost:6006

If you still encounter issues, please double-check the path to your log files

and ensure that the log files are not corrupted or empty.

Please help me write a gitignore file to remove pycache under any directory

To create a file that ignores the directories and .gitignore __pycache__

files in any directory, follow these steps: .pyc

Create a new file named in the root directory of your .gitignore

repository. You can do this using a text editor or from the command line:

bash Copy code

touch .gitignore

Open the file in your preferred text editor. .gitignore

Add the following lines to the file: .gitignore

gitignore Copy code

**/__pycache__/

*.pyc

The pattern will ignore all directories at **/__pycache__/ __pycache__

any level in the directory structure, and will ignore all files. *.pyc .pyc

Save and close the file. .gitignore

Commit the file to your repository: .gitignore

bash Copy code

git add .gitignore

git commit -m "Add .gitignore to ignore __pycache__ and .pyc files"

Now, the directories and files will be ignored by Git in __pycache__ .pyc

any directory.

import time

import retro

from stable_baselines3 import PPO

from street_fighter_custom_wrapper import StreetFighterCustomWrapper

RESET_ROUND = False # Reset the round when fight is over.

RENDERING = True

RANDOM_ACTION = False

MODEL_PATH = r"trained_models/ppo_ryu_7000000_steps"

def make_env(game, state):

def _init():

env = retro.make(

game=game,

state=state,

use_restricted_actions=retro.Actions.FILTERED,

obs_type=retro.Observations.IMAGE

)

env = StreetFighterCustomWrapper(env, reset_round=RESET_ROUND,

rendering=RENDERING)

return env

return _init

game = "StreetFighterIISpecialChampionEdition-Genesis"

env = make_env(game, state="Champion.Level12.RyuVsBison")()

model = PPO("CnnPolicy", env)

if not RANDOM_ACTION:

model.load(MODEL_PATH)

model = PPO.load(MODEL_PATH, env=env)

obs = env.reset()

done = False

num_episodes = 30

episode_reward_sum = 0

num_victory = 0

for _ in range(num_episodes):

done = False

obs = env.reset()

total_reward = 0

while not done:

timestamp = time.time()

if RANDOM_ACTION:

obs, reward, done, info = env.step(env.action_space.sample())

else:

action, _states = model.predict(obs)

obs, reward, done, info = env.step(action)

if reward != 0:

total_reward += reward

print("Reward: {:.3f}, playerHP: {}, enemyHP:{}".format(reward,

info['agent_hp'], info['enemy_hp']))

if info['enemy_hp'] < 0:

print("Victory!")

num_victory += 1

print("Total reward: {}".format(total_reward))

episode_reward_sum += total_reward

env.close()

print("Winning rate: {}".format(1.0 * num_victory / num_episodes))

if RANDOM_ACTION:

print("Average reward for random action:

{}".format(episode_reward_sum/num_episodes))

else:

print("Average reward for {}: {}".format(MODEL_PATH,

episode_reward_sum/num_episodes))

Could you modify this script so that I could record the gameplay with sound

during the test process?

To record the gameplay with sound during the test process, you can use the

class from the library. Here's the modified script: retro.Movie retro

python Copy code

import time

import os

import retro

from stable_baselines3 import PPO

from street_fighter_custom_wrapper import StreetFighterCustomWrapper

RESET_ROUND = False # Reset the round when fight is over.

RENDERING = True

RANDOM_ACTION = False

MODEL_PATH = r"trained_models/ppo_ryu_7000000_steps"

OUTPUT_DIR = "recordings"

if not os.path.exists(OUTPUT_DIR):

os.makedirs(OUTPUT_DIR)

def make_env (game, state):

def _init ():

env = retro.make(

game=game,

state=state,

use_restricted_actions=retro.Actions.FILTERED,

obs_type=retro.Observations.IMAGE,

)

env = StreetFighterCustomWrapper(env, reset_round=RESET_ROUND,

return env

return _init

game = "StreetFighterIISpecialChampionEdition-Genesis"

env = make_env(game, state= "Champion.Level12.RyuVsBison")()

model = PPO("CnnPolicy", env)

if not RANDOM_ACTION:

model.load(MODEL_PATH)

model = PPO.load(MODEL_PATH, env=env)

done = False

num_episodes = 30

episode_reward_sum = 0

num_victory = 0

for i in range (num_episodes):

done = False

obs = env.reset()

Start recording

movie_path = os.path.join(OUTPUT_DIR, f"episode_ {i + 1 } .bk2")

env.unwrapped.movie = retro.Movie(movie_path, retro.MovieMode.RECORD)

env.unwrapped.movie.step()

total_reward = 0

while not done:

timestamp = time.time()

if RANDOM_ACTION:

obs, reward, done, info = env.step(env.action_space.sample())

else :

action, _states = model.predict(obs)

obs, reward, done, info = env.step(action)

Record the step

env.unwrapped.movie.step()

if reward != 0 :

total_reward += reward

print ("Reward: {:.3f}, playerHP: {}, enemyHP:{}" . format

Stop recording

env.unwrapped.movie.close()

del env.unwrapped.movie

if info['enemy_hp'] < 0 :

print ("Victory!")

num_victory += 1

print ("Total reward: {}" . format (total_reward))

episode_reward_sum += total_reward

env.close()

print ("Winning rate: {}" . format (1.0 * num_victory / num_episodes))

if RANDOM_ACTION:

print ("Average reward for random action: {}" . format (episode_reward_sum

else :

print ("Average reward for {}: {}" . format (MODEL_PATH, episode_reward_sum

This script will save the recorded episodes as files in the .bk2

directory. You can then use a tool like BizHawk to play back the recordings

files with sound. .bk2

Your recording script reported the following error:

(StreetFighterAI) PS C:\Users\unitec\Documents\AIProjects\street-fighter-

ai\main> python .\test.py

Wrapping the env with a `Monitor` wrapper

Wrapping the env in a DummyVecEnv.

Wrapping the env in a VecTransposeImage.

Traceback (most recent call last):

File ".\test.py", line 51, in <module>

env.unwrapped.movie = retro.Movie(movie_path,

retro.MovieMode.RECORD)

AttributeError: module 'retro' has no attribute 'MovieMode'

Apologies for the confusion. I made an error in my response. The retro

library does not have a attribute. Instead, you can use the MovieMode

wrapper from the library to record the Monitor stable_baselines3

video.

However, the wrapper will not record the sound. In order to record Monitor

the gameplay with sound, you may need to use a separate screen recording

software.

Here's the modified script using the wrapper to record the video: Monitor

python Copy code

import time

import os

import retro

from stable_baselines3 import PPO

from stable_baselines3.common.monitor import Monitor

from stable_baselines3.common.vec_env import DummyVecEnv

from street_fighter_custom_wrapper import StreetFighterCustomWrapper

RESET_ROUND = False # Reset the round when fight is over.

RENDERING = True

RANDOM_ACTION = False

MODEL_PATH = r"trained_models/ppo_ryu_7000000_steps"

OUTPUT_DIR = "recordings"

if not os.path.exists(OUTPUT_DIR):

os.makedirs(OUTPUT_DIR)

def make_env (game, state):

def _init ():

env = retro.make(

game=game,

state=state,

use_restricted_actions=retro.Actions.FILTERED,

obs_type=retro.Observations.IMAGE,

)

env = StreetFighterCustomWrapper(env, reset_round=RESET_ROUND,

return env

return _init

game = "StreetFighterIISpecialChampionEdition-Genesis"

env = make_env(game, state= "Champion.Level12.RyuVsBison")()

env = Monitor(env, OUTPUT_DIR, video_callable= lambda episode_id: True

env = DummyVecEnv([lambda : env])

if not RANDOM_ACTION:

model = PPO.load(MODEL_PATH, env=env)

done = False

num_episodes = 30

episode_reward_sum = 0

num_victory = 0

for _ in range (num_episodes):

done = False

obs = env.reset()

total_reward = 0

while not done:

timestamp = time.time()

if RANDOM_ACTION:

obs, reward, done, info = env.step(env.action_space.sample())

else :

action, _states = model.predict(obs)

obs, reward, done, info = env.step(action)

if reward != 0 :

total_reward += reward

print ("Reward: {:.3f}, playerHP: {}, enemyHP:{}" . format

if info['enemy_hp'] < 0 :

print ("

Could you help modify my ".gitignore" file? I want to exclude the images

folder under my project folder and I have the following ".gitignore", but the

folder and the images are still in my git repository.

*.zip

**/__pycache__/

*.pyc

archives/

images/

data/

main/logs/monitoring/

recordings/

007*

If the folder and its contents have already been committed to the images/

repository, adding the folder to the file will not remove it from .gitignore

the repository. You need to remove the folder from the repository first and

then add it to the file. .gitignore

Here's how to remove the folder from your repository: images/

Make sure you have added the entry in your file, images/ .gitignore

which you already have.

Commit the changes to the file: .gitignore

bash Copy code

git add .gitignore

git commit -m "Update .gitignore to exclude images folder"

Remove the folder from the repository: images/

bash Copy code

git rm -r --cached images/

This command removes the folder from the repository without deleting it from

your file system. The option tells Git to keep the local files but --cached

remove the folder from the repository.

Commit the changes:

bash Copy code

git commit -m "Remove images folder from repository"

Push the changes to the remote repository:

bash Copy code

git push

Now the folder will be excluded from your Git repository. Any new images/

files or changes to the files in the folder will be ignored by Git. images/

How can I remove the "images/" folder using "GitHub Desktop"?

To remove the folder from your repository using GitHub Desktop, images/

follow these steps:

Open your repository in GitHub Desktop.

Click on the "Repository" menu in the top left corner, and then click on

"Open in <your text editor> ". This will open the repository folder in your

preferred text editor.

Open the file in the text editor (or create one if it doesn't .gitignore

exist) and add the following line:

Copy code

images/

Save and close the file. .gitignore

Return to GitHub Desktop. You should see the changes made to the

file listed under "Changes". .gitignore

Stage the changes to the file by checking the box next to .gitignore

the file.

Enter a commit message (e.g., "Update .gitignore to exclude images

folder") and click "Commit to main" (or the name of your current branch).

Now you need to remove the folder from the repository using images/

the command line, as GitHub Desktop does not have a built-in option to

remove folders from the repository while keeping them in the file system.

Open a command prompt or terminal, and navigate to the repository

folder:

bash Copy code

cd /path/to/your/repository

Replace with the actual path to your repository /path/to/your/repository

folder.

Run the following command to remove the folder from the images/

repository without deleting it from your file system:

bash Copy code

git rm -r --cached images/

Return to GitHub Desktop. You should see the removed folder images/

listed under "Changes" as deleted files.

Stage the changes by checking the box next to each deleted file.

Enter a commit message (e.g., "Remove images folder from repository")

and click "Commit to main" (or the name of your current branch).

Click the "Push origin" button to push the changes to the remote

repository.

Now the folder is removed from the repository and excluded by the images/

file. Any new files or changes to the files in the .gitignore images/

folder will be ignored by Git.

I'm trying to create a condo environment with python 3.8.10 using the

command "conda create -n StreetFighterAI python=3.8.10", but it reported

the following error. Could you help me revise the command?

(base) ly@unitec-mac-mini ~ % conda create -n StreetFighterAI

python=3.8.10

Collecting package metadata (current_repodata.json): done

Solving environment: failed with repodata from current_repodata.json, will

retry with next repodata source.

Collecting package metadata (repodata.json): done

Solving environment: failed

PackagesNotFoundError: The following packages are not available from

current channels:

- python=3.8.10

Current channels:

- https://repo.anaconda.com/pkgs/main/osx-arm64

- https://repo.anaconda.com/pkgs/main/noarch

- https://repo.anaconda.com/pkgs/r/osx-arm64

- https://repo.anaconda.com/pkgs/r/noarch

To search for alternate channels that may provide the conda package you're

looking for, navigate to

https://anaconda.org

and use the search bar at the top of the page.

It appears that the specific Python version 3.8.10 is not available in the default

channels for your system architecture (osx-arm64). You can try creating a

conda environment with the closest available Python 3.8.x version instead.

To find the latest available Python 3.8.x version in the default channels, you

can use the following command:

bash Copy code

conda search python=3.8 --info

Look for the latest 3.8.x version available for your system architecture (osx-

arm64). For example, let's say the latest available version is 3.8.12.

Now, create a new conda environment with the found Python version:

bash Copy code

conda create -n StreetFighterAI python=3.8.12

Replace with the actual version you found using the 3.8.12 conda

command. search

If you still encounter issues or need the exact 3.8.10 version, you can try

searching for it in the channel: conda-forge

bash Copy code

conda create -n StreetFighterAI python=3.8.10 -c conda-forge

This command will try to create a new environment using the conda-forge

channel, which might have the specific Python version you are looking for.

(StreetFighterAItest) PS C:\Users\unitec\Documents\AIProjects\street-fighter-

ai\main> python .\test.py

Wrapping the env with a `Monitor` wrapper

Wrapping the env in a DummyVecEnv.

Wrapping the env in a VecTransposeImage.

C:\ProgramData\Anaconda3\envs\StreetFighterAItest\lib\site-

packages\stable_baselines3\common\base_class.py:719: UserWarning: You

are probably loading a model saved with SB3 < 1.7.0, we deactivated

exact_match so you can save the model again to avoid issues in the future

(see https://github.com/DLR-RM/stable-baselines3/issues/1233 for more

info). Original error: Error(s) in loading state_dict for ActorCriticCnnPolicy:

Missing key(s) in state_dict: "pi_features_extractor.cnn.0.weight",

"pi_features_extractor.cnn.0.bias", "pi_features_extractor.cnn.2.weight",

"pi_features_extractor.cnn.2.bias", "pi_features_extractor.cnn.4.weight",

"pi_features_extractor.cnn.4.bias", "pi_features_extractor.linear.0.weight",

"pi_features_extractor.linear.0.bias", "vf_features_extractor.cnn.0.weight",

"vf_features_extractor.cnn.0.bias", "vf_features_extractor.cnn.2.weight",

"vf_features_extractor.cnn.2.bias", "vf_features_extractor.cnn.4.weight",

"vf_features_extractor.cnn.4.bias", "vf_features_extractor.linear.0.weight",

"vf_features_extractor.linear.0.bias".

Note: the model should still work fine, this only a warning.

When I was running the following script, the above warnings are reported.

Could you provide a script to load the model and save it again to avoid these

warnings?

import os

import time

import retro

from stable_baselines3 import PPO

from street_fighter_custom_wrapper import StreetFighterCustomWrapper

RESET_ROUND = True # Whether to reset the round when fight is over.

RENDERING = False # Whether to render the game screen.

RECORDING = False # Whether to record the game screen.

MODEL_NAME = r"ppo_ryu_7000000_steps" # Speicify the model file to

load.

NUM_EPISODES = 3

RANDOM_ACTION = False

MODEL_DIR = r"trained_models/"

MOVIE_DIR = r"recordings"

def make_env(game, state):

def _init():

env = retro.make(

game=game,

state=state,

use_restricted_actions=retro.Actions.FILTERED,

obs_type=retro.Observations.IMAGE

)

env = StreetFighterCustomWrapper(env, reset_round=RESET_ROUND,

rendering=RENDERING)

return env

return _init

game = "StreetFighterIISpecialChampionEdition-Genesis"

env = make_env(game, state="Champion.Level12.RyuVsBison")()

model = PPO("CnnPolicy", env)

if not RANDOM_ACTION:

model = PPO.load(os.path.join(MODEL_DIR, MODEL_NAME), env=env)

obs = env.reset()

done = False

num_episodes = NUM_EPISODES

episode_reward_sum = 0

num_victory = 0

for _ in range(num_episodes):

done = False

obs = env.reset()

if RECORDING:

Start recording

movie_path = os.path.join(MOVIE_DIR, "{}.bk2".format(MODEL_NAME))

env.unwrapped.movie = retro.Movie(movie_path,

retro.MovieMode.RECORD)

env.unwrapped.movie.step()

total_reward = 0

while not done:

timestamp = time.time()

if RANDOM_ACTION:

obs, reward, done, info = env.step(env.action_space.sample())

else:

action, _states = model.predict(obs)

obs, reward, done, info = env.step(action)

if RECORDING:

Record the step

env.unwrapped.movie.step()

if reward != 0:

total_reward += reward

print("Reward: {:.3f}, playerHP: {}, enemyHP:{}".format(reward,

info['agent_hp'], info['enemy_hp']))

if RECORDING:

Stop recording

env.unwrapped.movie.close()

del env.unwrapped.movie

if info['enemy_hp'] < 0:

print("Victory!")

num_victory += 1

print("Total reward: {}".format(total_reward))

episode_reward_sum += total_reward

env.close()

print("Winning rate: {}".format(1.0 * num_victory / num_episodes))

if RANDOM_ACTION:

print("Average reward for random action:

{}".format(episode_reward_sum/num_episodes))

else:

print("Average reward for {}: {}".format(MODEL_NAME,

episode_reward_sum/num_episodes))

You can modify your script to load the model, re-save it, and then use it for

the rest of the script. This should update the model file and help you avoid

the warning in the future. Add the following lines after loading the model and

before running the episodes:

python Copy code

Load the model

model = PPO.load(os.path.join(MODEL_DIR, MODEL_NAME), env=env)

Save the model with the current version of Stable Baselines 3

model.save(os.path.join(MODEL_DIR, MODEL_NAME + "_updated"))

Load the updated model

model = PPO.load(os.path.join(MODEL_DIR, MODEL_NAME + "_updated"),

This will create an updated version of your model file in the MODEL_DIR

directory with the suffix "_updated". You can then use the updated model file

in your script without encountering the warning.

Here's the modified script with the added lines:

python Copy code

import os

import time

import retro

from stable_baselines3 import PPO

from street_fighter_custom_wrapper import StreetFighterCustomWrapper

... (rest of the code, up to the RANDOM_ACTION check)

if not RANDOM_ACTION:

Load the model

model = PPO.load(os.path.join(MODEL_DIR, MODEL_NAME), env=env)

Save the model with the current version of Stable Baselines

model.save(os.path.join(MODEL_DIR, MODEL_NAME + "_updated"))

Load the updated model

model = PPO.load(os.path.join(MODEL_DIR, MODEL_NAME + "_updated"

... (rest of the code, starting from the num_episodes line)

Make sure to use the updated model file (with the "_updated" suffix) in your

future runs to avoid the warning.

(StreetFighterAItest) PS C:\Users\unitec\Documents\AIProjects\street-fighter-

ai\main> python .\test.py

Wrapping the env with a `Monitor` wrapper

Wrapping the env in a DummyVecEnv.

Wrapping the env in a VecTransposeImage.

Reward: 0.114, playerHP: 176, enemyHP:138

Reward: 0.105, playerHP: 176, enemyHP:103

Reward: 0.114, playerHP: 176, enemyHP:65

Reward: 0.105, playerHP: 176, enemyHP:30

Reward: 0.528, playerHP: 176, enemyHP:-1

Victory!

Total reward: 0.966

Reward: 0.114, playerHP: 176, enemyHP:138

Reward: 0.105, playerHP: 176, enemyHP:103

Reward: 0.114, playerHP: 176, enemyHP:65

Reward: 0.105, playerHP: 176, enemyHP:30

Reward: 0.528, playerHP: 176, enemyHP:-1

Victory!

Total reward: 0.966

Reward: 0.114, playerHP: 176, enemyHP:138

Reward: 0.105, playerHP: 176, enemyHP:103

Reward: 0.114, playerHP: 176, enemyHP:65

Reward: 0.105, playerHP: 176, enemyHP:30

Reward: 0.528, playerHP: 176, enemyHP:-1

Victory!

Total reward: 0.966

Winning rate: 1.0

Average reward for ppo_ryu_7000000_steps_updated:

0.9659999999999999

Could you modify the following script so that I could hide the output of

"Wrapping the env with a `Monitor` wrapper

Wrapping the env in a DummyVecEnv.

Wrapping the env in a VecTransposeImage."?

import os

import time

import retro

from stable_baselines3 import PPO

from street_fighter_custom_wrapper import StreetFighterCustomWrapper

RESET_ROUND = True # Whether to reset the round when fight is over.

RENDERING = False # Whether to render the game screen.

RECORDING = False # Whether to record the game screen.

MODEL_NAME = r"ppo_ryu_7000000_steps_updated" # Speicify the model

file to load.

NUM_EPISODES = 3

RANDOM_ACTION = False

MODEL_DIR = r"trained_models/"

MOVIE_DIR = r"recordings"

def make_env(game, state):

def _init():

env = retro.make(

game=game,

state=state,

use_restricted_actions=retro.Actions.FILTERED,

obs_type=retro.Observations.IMAGE

)

env = StreetFighterCustomWrapper(env, reset_round=RESET_ROUND,

rendering=RENDERING)

return env

return _init

game = "StreetFighterIISpecialChampionEdition-Genesis"

env = make_env(game, state="Champion.Level12.RyuVsBison")()

model = PPO("CnnPolicy", env)

if not RANDOM_ACTION:

model = PPO.load(os.path.join(MODEL_DIR, MODEL_NAME), env=env)

obs = env.reset()

done = False

num_episodes = NUM_EPISODES

episode_reward_sum = 0

num_victory = 0

for _ in range(num_episodes):

done = False

obs = env.reset()

if RECORDING:

Start recording

movie_path = os.path.join(MOVIE_DIR, "{}.bk2".format(MODEL_NAME))

env.unwrapped.movie = retro.Movie(movie_path,

retro.MovieMode.RECORD)

env.unwrapped.movie.step()

total_reward = 0

while not done:

timestamp = time.time()

if RANDOM_ACTION:

obs, reward, done, info = env.step(env.action_space.sample())

else:

action, _states = model.predict(obs)

obs, reward, done, info = env.step(action)

if RECORDING:

Record the step

env.unwrapped.movie.step()

if reward != 0:

total_reward += reward

print("Reward: {:.3f}, playerHP: {}, enemyHP:{}".format(reward,

info['agent_hp'], info['enemy_hp']))

if RECORDING:

Stop recording

env.unwrapped.movie.close()

del env.unwrapped.movie

if info['enemy_hp'] < 0:

print("Victory!")

num_victory += 1

print("Total reward: {}".format(total_reward))

episode_reward_sum += total_reward

env.close()

print("Winning rate: {}".format(1.0 * num_victory / num_episodes))

if RANDOM_ACTION:

print("Average reward for random action:

{}".format(episode_reward_sum/num_episodes))

else:

print("Average reward for {}: {}".format(MODEL_NAME,

episode_reward_sum/num_episodes))

You can suppress the output of the wrapper messages by redirecting the

to a temporary file or a device during the environment stdout null

creation. Here's a modified version of the function that hides the make_env

output of the wrapper messages:

python Copy code

import sys

from contextlib import contextmanager

@contextmanager

def suppress_stdout ():

with open (os.devnull, "w") as devnull:

old_stdout = sys.stdout

sys.stdout = devnull

try :

yield

finally :

sys.stdout = old_stdout

def make_env (game, state):

def _init ():

with suppress_stdout():

env = retro.make(

game=game,

state=state,

use_restricted_actions=retro.Actions.FILTERED,

obs_type=retro.Observations.IMAGE

)

env = StreetFighterCustomWrapper(env, reset_round=RESET_ROUND,

return env

return _init

This will temporarily redirect the to a null device (essentially stdout

discarding the output) while the environment is being created, which will hide

the output of the wrapper messages. The original is restored after stdout

the environment creation is complete.

The rest of your script remains unchanged.

I managed use the following script to record the game as ".bk2" file:

import os

import time

import retro

from stable_baselines3 import PPO

from street_fighter_custom_wrapper import StreetFighterCustomWrapper

RESET_ROUND = True # Whether to reset the round when fight is over.

RENDERING = False # Whether to render the game screen.

RECORDING = True # Whether to record the game screen.

MODEL_NAME = r"ppo_ryu_7000000_steps_updated" # Speicify the model

file to load.

NUM_EPISODES = 1

RANDOM_ACTION = False

MODEL_DIR = r"trained_models/"

MOVIE_DIR = r"recordings/"

def make_env(game, state):

def _init():

if RECORDING:

env = retro.make(

game=game,

state=state,

use_restricted_actions=retro.Actions.FILTERED,

obs_type=retro.Observations.IMAGE,

record=os.path.join(MOVIE_DIR, "{}.bk2".format(MODEL_NAME))

)

else:

env = retro.make(

game=game,

state=state,

use_restricted_actions=retro.Actions.FILTERED,

obs_type=retro.Observations.IMAGE

)

env = StreetFighterCustomWrapper(env, reset_round=RESET_ROUND,

rendering=RENDERING)

return env

return _init

game = "StreetFighterIISpecialChampionEdition-Genesis"

env = make_env(game, state="Champion.Level12.RyuVsBison")()

if not RANDOM_ACTION:

model = PPO.load(os.path.join(MODEL_DIR, MODEL_NAME), env=env)

done = False

num_episodes = NUM_EPISODES

episode_reward_sum = 0

num_victory = 0

if RECORDING:

num_rounds = 0

print()

for _ in range(num_episodes):

done = False

obs = env.reset()

total_reward = 0

while not done:

timestamp = time.time()

if RANDOM_ACTION:

obs, reward, done, info = env.step(env.action_space.sample())

else:

action, _states = model.predict(obs)

obs, reward, done, info = env.step(action)

if reward != 0 and RESET_ROUND:

total_reward += reward

print("Reward: {:.3f}, playerHP: {}, enemyHP:{}".format(reward,

info['agent_hp'], info['enemy_hp']))

if info['enemy_hp'] < 0 and RESET_ROUND:

print("You Win!")

num_victory += 1

if RECORDING and (info['enemy_hp'] < 0 or info['agent_hp'] < 0):

num_rounds += 1

if num_rounds == 3:

done = True

if RESET_ROUND:

print("Total reward: {}\n".format(total_reward))

episode_reward_sum += total_reward

env.close()

if RESET_ROUND:

print("Winning rate: {}".format(1.0 * num_victory / num_episodes))

if RANDOM_ACTION:

print("Average reward for random action:

{}".format(episode_reward_sum/num_episodes))

else:

print("Average reward for {}: {}".format(MODEL_NAME,

episode_reward_sum/num_episodes))

However, the file name is default to "StreetFighterIISpecialChampionEdition-

Genesis-Champion.Level12.RyuVsBison-000000.bk2", but I want name it as

"os.path.join(MOVIE_DIR, "{}.bk2".format(MODEL_NAME))" specifically, yet

when I modify the "record='.'" to my specified name, nothing get recorded.

Could you modify the script to record the game with the specified file name?

The function does not accept a full file path for the retro.make() record

parameter. However, you can work around this by changing the current

working directory to before creating the environment and then MOVIE_DIR

resetting the current working directory afterward.

Here's the modified function to record the game with the make_env

specified file name:

python Copy code

import os

import time

import retro

from stable_baselines3 import PPO

from street_fighter_custom_wrapper import StreetFighterCustomWrapper

... (other parts of the code remain the same)

def make_env (game, state):

def _init ():

if RECORDING:

Save the original working directory

original_cwd = os.getcwd()

Change the current working directory to MOVIE_DIR

os.chdir(MOVIE_DIR)

env = retro.make(

game=game,

state=state,

use_restricted_actions=retro.Actions.FILTERED,

obs_type=retro.Observations.IMAGE,

record= "{}.bk2" . format (MODEL_NAME)

)

Restore the original working directory

os.chdir(original_cwd)

else :

env = retro.make(

game=game,

state=state,

use_restricted_actions=retro.Actions.FILTERED,

obs_type=retro.Observations.IMAGE

)

env = StreetFighterCustomWrapper(env, reset_round=RESET_ROUND,

return env

return _init

... (other parts of the code remain the same)

This modified function saves the original working directory, changes the

current working directory to , and creates the environment with MOVIE_DIR

the specified file name. After the environment is created, it restores the

original working directory.

(base) PS C:\Users\unitec\Documents\AIProjects\street-fighter-

ai\main\trained_models> ls

Directory: C:\Users\unitec\Documents\AIProjects\street-figh

ter-ai\main\trained_models

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a---- 2023/4/5 18:25 44518693 ppo_ryu_10000

00_steps.zip

-a---- 2023/4/6 16:06 43704763 ppo_ryu_10000

00_steps_upda

ted.zip

-a---- 2023/4/5 18:32 44518693 ppo_ryu_15000

00_steps.zip

-a---- 2023/4/6 16:06 43704763 ppo_ryu_15000

00_steps_upda

ted.zip

-a---- 2023/4/5 18:39 44518689 ppo_ryu_20000

00_steps.zip

-a---- 2023/4/6 16:06 43704759 ppo_ryu_20000

00_steps_upda

ted.zip

-a---- 2023/4/5 18:47 44518661 ppo_ryu_25000

00_steps.zip

-a---- 2023/4/6 16:06 43704731 ppo_ryu_25000

00_steps_upda

ted.zip

-a---- 2023/4/5 18:54 44518650 ppo_ryu_30000

00_steps.zip

-a---- 2023/4/6 16:06 43704720 ppo_ryu_30000

00_steps_upda

ted.zip

-a---- 2023/4/5 19:01 44518642 ppo_ryu_35000

00_steps.zip

-a---- 2023/4/6 16:06 43704712 ppo_ryu_35000

00_steps_upda

ted.zip

-a---- 2023/4/5 19:08 44518646 ppo_ryu_40000

00_steps.zip

-a---- 2023/4/6 16:06 43704716 ppo_ryu_40000

00_steps_upda

ted.zip

-a---- 2023/4/5 19:16 44518642 ppo_ryu_45000

00_steps.zip

-a---- 2023/4/6 16:06 43704712 ppo_ryu_45000

00_steps_upda

ted.zip

-a---- 2023/4/5 19:23 44518645 ppo_ryu_50000

00_steps.zip

-a---- 2023/4/6 16:06 43704715 ppo_ryu_50000

00_steps_upda

ted.zip

-a---- 2023/4/5 18:17 44518668 ppo_ryu_50000

0_steps.zip

-a---- 2023/4/6 16:06 43704738 ppo_ryu_50000

0_steps_updat

ed.zip

-a---- 2023/4/5 19:31 44518642 ppo_ryu_55000

00_steps.zip

-a---- 2023/4/6 16:06 43704712 ppo_ryu_55000

00_steps_upda

ted.zip

-a---- 2023/4/5 19:38 44518642 ppo_ryu_60000

00_steps.zip

-a---- 2023/4/6 16:06 43704712 ppo_ryu_60000

00_steps_upda

ted.zip

-a---- 2023/4/5 19:46 44518642 ppo_ryu_65000

00_steps.zip

-a---- 2023/4/6 16:06 43704712 ppo_ryu_65000

00_steps_upda

ted.zip

-a---- 2023/4/5 19:53 44518642 ppo_ryu_70000

00_steps.zip

-a---- 2023/4/6 16:06 43704712 ppo_ryu_70000

00_steps_upda

ted.zip

-a---- 2023/4/5 19:57 787012 training_log.

txt

The above is the files under my trained_models folder. Could you help me

write the ".gitignore" to include only the ppo_ryu_2000000_steps_updated,

ppo_ryu_2500000_steps_updated, ppo_ryu_3000000_steps_updated，and

ppo_ryu_7000000_steps_updated？

Sure, here's a file that includes only the specified files: .gitignore

yaml Copy code

Ignore everything

*

Un-ignore the specific files you want to include

!ppo_ryu_2000000_steps_updated.*

!ppo_ryu_2500000_steps_updated.*

!ppo_ryu_3000000_steps_updated.*

!ppo_ryu_7000000_steps_updated.*

This file first ignores everything in the directory using the .gitignore *

wildcard. Then, it un-ignores the specified files by using the prefix !

followed by the file name pattern (e.g.,

). The part in each pattern !ppo_ryu_2000000_steps_updated.* .*

ensures that any file extension is included.

The "trained_models" folder is "main/trained_models" under my project.

Could you update the ".gitignore" file to ignore the whole folder first and re-

select these model files?

Sure, here's the updated file to ignore the .gitignore

folder first and then include the specified files: main/trained_models

bash Copy code

Ignore the 'main/trained_models' folder

/main/trained_models/*

Un-ignore the specific files you want to include

!/main/trained_models/ppo_ryu_2000000_steps_updated.*

!/main/trained_models/ppo_ryu_2500000_steps_updated.*

!/main/trained_models/ppo_ryu_3000000_steps_updated.*

!/main/trained_models/ppo_ryu_7000000_steps_updated.*

This file first ignores the entire folder. .gitignore main/trained_models

Then, it un-ignores the specified files within that folder by using the prefix !

followed by the file path (e.g.,

). The !/main/trained_models/ppo_ryu_2000000_steps_updated.* .*

part in each pattern ensures that any file extension is included.

how do I remove the uploaded models from git cache?

To remove the uploaded models from the Git cache, follow these steps:

First, ensure you have added the updated file to your .gitignore

repository.

Open a terminal or command prompt and navigate to your repository's

root directory.

Execute the following commands:

bash Copy code

Remove all files from the Git cache

git rm -r --cached .

Add files back to the repository while respecting the .gitignore

git add .

Commit the changes

git commit -m "Remove unwanted models from Git cache and update .gitignore"

Push the changes to the remote repository

git push

These commands will remove all files from the Git cache, and then re-add

them while respecting the updated file. The unwanted models .gitignore

should no longer be tracked by Git, and the updated file will .gitignore

prevent them from being added again in the future.

http://tasvideos.org/BizHawk.html

