
Model: GPT-4

I'm trying to train an AI agent that can beat the Street Fighter II game based

on raw pixel information. The following are the training script, the custom

environment description, and the cnn model file.

train_cv_sf2_ai.py

import gym

import cv2

import retro

import numpy as np

from stable_baselines3 import PPO

from stable_baselines3.common.vec_env import DummyVecEnv,

SubprocVecEnv

from stable_baselines3.common.preprocessing import is_image_space,

is_image_space_channels_first

import torch

import torch.nn as nn

from custom_cnn import CustomCNN

from custom_sf2_cv_env import StreetFighterCustomWrapper

def make_env(game, state, seed=0):

def _init():

win_template = cv2.imread('images/pattern_wins_gray.png',

cv2.IMREAD_GRAYSCALE)

lose_template = cv2.imread('images/pattern_lose_gray.png',

cv2.IMREAD_GRAYSCALE)

env = retro.RetroEnv(game=game, state=state,

obs_type=retro.Observations.IMAGE)

env = StreetFighterCustomWrapper(env, win_template, lose_template)

env.seed(seed)

return env

return _init

def main():

Set up the environment and model

game = "StreetFighterIISpecialChampionEdition-Genesis"

state_stages = [

"Champion.Level1.ChunLiVsGuile",

"Champion.Level2.ChunLiVsKen",

"Champion.Level3.ChunLiVsChunLi",

"Champion.Level4.ChunLiVsZangief",

Add other stages as necessary

]

num_envs = 8

env = SubprocVecEnv([make_env(game, state_stages[0], seed=i) for i in

range(num_envs)])

policy_kwargs = {

'features_extractor_class': CustomCNN

}

model = PPO(

"CnnPolicy",

env,

device="cuda",

policy_kwargs=policy_kwargs,

verbose=1,

n_steps=2048,

batch_size=128,

n_epochs=10,

learning_rate=0.00025,

ent_coef=0.01,

clip_range=0.2,

clip_range_vf=None,

gamma=0.99,

gae_lambda=0.95,

max_grad_norm=0.5,

use_sde=False,

sde_sample_freq=-1

)

model.learn(total_timesteps=int(1e6))

model.save("ppo_sf2_cnn")

if __name__ == "__main__":

main()

custom_sf2_cv_env.py

import gym

import cv2

import numpy as np

Custom environment wrapper

class StreetFighterCustomWrapper(gym.Wrapper):

def __init__(self, env, win_template, lose_template, threshold=0.65):

super(StreetFighterCustomWrapper, self).__init__(env)

self.win_template = win_template

self.lose_template = lose_template

self.threshold = threshold

self.game_screen_gray = None

Update observation space to single-channel grayscale image

self.observation_space = gym.spaces.Box(

low=0, high=255, shape=(84, 84, 1), dtype=np.uint8

)

def _preprocess_observation(self, observation):

self.game_screen_gray = cv2.cvtColor(observation,

cv2.COLOR_BGR2GRAY)

Print the size of self.game_screen_gray

print("self.game_screen_gray size: ", self.game_screen_gray.shape)

Print the size of the observation

print("Observation size: ", observation.shape)

resized_image = cv2.resize(self.game_screen_gray, (84, 84),

interpolation=cv2.INTER_AREA)

return np.expand_dims(resized_image, axis=-1)

def _check_game_over(self):

win_res = cv2.matchTemplate(self.game_screen_gray, self.win_template,

cv2.TM_CCOEFF_NORMED)

lose_res = cv2.matchTemplate(self.game_screen_gray,

self.lose_template, cv2.TM_CCOEFF_NORMED)

if np.max(win_res) >= self.threshold:

return True

if np.max(lose_res) >= self.threshold:

return True

return False

def _get_reward(self):

player_health_area = self.game_screen_gray[15:20, 32:120]

oppoent_health_area = self.game_screen_gray[15:20, 136:224]

Get health points using the number of pixels above 129.

player_health = np.sum(player_health_area > 129) /

player_health_area.size

opponent_health = np.sum(oppoent_health_area > 129) /

oppoent_health_area.size

reward = (player_health - opponent_health) * 100

return reward

def reset(self):

observation = self.env.reset()

return self._preprocess_observation(observation)

def step(self, action):

observation, _, _, info = self.env.step(action)

custom_reward = self._get_reward()

custom_done = self._check_game_over() or False

return self._preprocess_observation(observation), custom_reward,

custom_done, info

(custom_cnn.py)

import gym

import torch

import torch.nn as nn

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

Custom feature extractor (CNN)

class CustomCNN(BaseFeaturesExtractor):

def __init__(self, observation_space: gym.Space):

super(CustomCNN, self).__init__(observation_space, features_dim=512)

self.cnn = nn.Sequential(

nn.Conv2d(1, 32, kernel_size=8, stride=4, padding=0),

nn.ReLU(),

nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0),

nn.ReLU(),

nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0),

nn.ReLU(),

nn.Flatten(),

nn.Linear(3136, self.features_dim),

nn.ReLU()

)

def forward(self, observations: torch.Tensor) -> torch.Tensor:

return self.cnn(observations)

During training, the value_loss stays at greater than 100000 and doesn't

decrease. I think there might be some big problems within my codes. Please

help me identify those problems and provide detailed modification

suggestions, so that I could have an ai model that can properly decrease its

value_loss during training.

After examining your code, I found several potential issues that might be

causing the value_loss to remain high. Here are my suggestions for

improvements:

Reward scaling: The current reward calculation might be causing issues in

the learning process. Large rewards can cause the value function to have

high values, which may affect the gradients and slow down the learning

process. To fix this, you can scale down the rewards:

python Copy code

reward = (player_health - opponent_health) * 100

Change this line to:

python Copy code

reward = (player_health - opponent_health) * 10

Reward function: The current reward function might not be informative

enough for the agent to learn a proper policy. You can try adding more

components to the reward function, such as giving a positive reward for

hitting the opponent and a negative reward for getting hit. You can

calculate this by checking the differences in health values between

consecutive frames.

Normalize observations: Neural networks generally work better with

normalized input data. You can normalize the input image by dividing it by

255, which scales the pixel values to the range [0, 1]:

Change this line in : _preprocess_observation

python Copy code

return np.expand_dims(resized_image, axis=- 1)

To:

python Copy code

return np.expand_dims(resized_image / 255.0 , axis=- 1)

Model hyperparameters: You may need to experiment with different

hyperparameters for the PPO model to improve learning. Some

suggestions to try:

Increase to a larger value, like 4096. n_steps

Increase to 256 or 512. batch_size

Decrease the learning rate to 0.0001 or 0.00005.

Try different values for , such as 0.001 or 0.005. ent_coef

Increase to 15 or 20. n_epochs

Training iterations: You can increase the number of training iterations

() to give the model more opportunities to learn. total_timesteps

python Copy code

model.learn(total_timesteps= int (1e6))

Change this line to:

python Copy code

model.learn(total_timesteps= int (5e6))

Keep in mind that increasing the number of training iterations will also

increase the training time.

Make these changes and monitor the value_loss during training. It might take

some experimentation with different reward functions and hyperparameters

to find the best configuration for your specific problem.

I think you need to change the "dtype=np.uint8" in "observation_space" as

well (perhaps some other places as well), as you divide the values by 255.0

and make them "float". If I'm correct, please list all the relevant code

modification.

Besides, please provide a detailed reward function so that the agent could

learn more effectively. The information I'm able to acquire from the game

screen includes the health of both the player and the opponent

("player_health" and "oppnent_health", both are percentage values between

0 and 1) at each frame. Please write the code accordingly.

You are correct that dividing the pixel values by 255.0 changes the data type

to float. To fix this, you can modify the definition in the observation_space

class. Change the dtype to : StreetFighterCustomWrapper np.float32

python Copy code

self.observation_space = gym.spaces.Box(

low= 0 , high= 1 , shape=(84 , 84 , 1), dtype=np.float32

)

As for the reward function, you can use the health information of the player

and the opponent to calculate the reward based on the difference in health

between consecutive frames. Here's an example of how you can implement

this:

Store the previous health values in the StreetFighterCustomWrapper

class:

python Copy code

class StreetFighterCustomWrapper (gym.Wrapper):

def __init__ (self, env, win_template, lose_template, threshold=

...

self.prev_player_health = None

self.prev_opponent_health = None

...

Update the function to use the health difference: _get_reward

python Copy code

def _get_reward (self):

player_health_area = self.game_screen_gray[15 : 20 , 32 : 120]

opponent_health_area = self.game_screen_gray[15 : 20 , 136 : 224]

player_health = np. sum (player_health_area > 129) / player_health_area.size

opponent_health = np. sum (opponent_health_area > 129) / oppoent_health_area.size

if self.prev_player_health is None or self.prev_opponent_health

self.prev_player_health = player_health

self.prev_opponent_health = opponent_health

return 0

player_health_diff = player_health - self.prev_player_health

opponent_health_diff = opponent_health - self.prev_opponent_health

reward = (opponent_health_diff - player_health_diff) * 100

self.prev_player_health = player_health

self.prev_opponent_health = opponent_health

return reward

Reset the previous health values in the method: reset

python Copy code

def reset (self):

observation = self.env.reset()

self.prev_player_health = None

self.prev_opponent_health = None

return self._preprocess_observation(observation)

This reward function will give a positive reward for hitting the opponent and a

negative reward for getting hit. The agent can use this information to learn a

policy that maximizes the damage inflicted on the opponent while minimizing

the damage received.

What's the problem with using "player_health - opponent_health" directly?

Using "player_health - opponent_health" directly as the reward function is

not necessarily a problem, but it might not provide enough information for the

agent to learn an effective policy. The main issue is that this reward function

does not explicitly encourage the agent to hit the opponent or avoid getting

hit, since it only measures the health difference at a specific point in time.

When the agent receives a reward based on the current health difference, it

may not be able to clearly associate its actions with the consequences of

those actions. For example, if the agent hits the opponent, the health

difference might increase, but it may not be clear to the agent which action

led to that increase.

On the other hand, when the reward function is based on the difference in

health between consecutive frames, the agent receives a more immediate

signal about the consequences of its actions. This helps the agent

understand which actions lead to positive rewards (e.g., hitting the opponent)

and which actions lead to negative rewards (e.g., getting hit).

In summary, using "player_health - opponent_health" directly might not

provide enough guidance for the agent to learn a good policy. Instead, using

the difference in health between consecutive frames can provide a clearer

signal for the agent about the consequences of its actions, making it easier to

learn an effective policy.

The new script gave the following errors:

(StreetFighterAI) PS C:\Users\unitec\Documents\AIProjects\street-fighter-ai>

python .\train_cv_sf2_ai.py

Using cuda device

Traceback (most recent call last):

File ".\train_cv_sf2_ai.py", line 67, in <module>

main()

File ".\train_cv_sf2_ai.py", line 62, in main

model.learn(total_timesteps=int(500000))

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\ppo\ppo.py", line 299, in learn

return super(PPO, self).learn(

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\on_policy_algorithm.py", line 234, in

learn

continue_training = self.collect_rollouts(self.env, callback,

self.rollout_buffer, n_rollout_steps=self.n_steps)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\on_policy_algorithm.py", line 166, in

collect_rollouts

actions, values, log_probs = self.policy.forward(obs_tensor)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\policies.py", line 563, in forward

latent_pi, latent_vf, latent_sde = self._get_latent(obs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\policies.py", line 581, in _get_latent

features = self.extract_features(obs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\policies.py", line 128, in

extract_features

return self.features_extractor(preprocessed_obs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\Users\unitec\Documents\AIProjects\street-fighter-

ai\custom_cnn.py", line 23, in forward

return self.cnn(observations)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\container.py", line 139, in forward

input = module(input)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\conv.py", line 443, in forward

return self._conv_forward(input, self.weight, self.bias)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\conv.py", line 439, in _conv_forward

return F.conv2d(input, weight, bias, self.stride,

RuntimeError: Given groups=1, weight of size [32, 1, 8, 8], expected input[8,

84, 84, 1] to have 1 channels, but got 84 channels instead

My apologies for the confusion. It seems like the issue is caused by the input

tensor's shape being (batch_size, height, width, channels), but PyTorch

expects the input shape to be (batch_size, channels, height, width). You can

fix this by swapping the channel dimension in the method of the forward

class. CustomCNN

Here's the updated class: CustomCNN

python Copy code

import gym

import torch

import torch.nn as nn

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

class CustomCNN (BaseFeaturesExtractor):

def __init__ (self, observation_space: gym.Space):

super (CustomCNN, self).__init__(observation_space, features_dim=

self.cnn = nn.Sequential(

nn.Conv2d(1 , 32 , kernel_size= 8 , stride= 4 , padding= 0),

nn.ReLU(),

nn.Conv2d(32 , 64 , kernel_size= 4 , stride= 2 , padding= 0),

nn.ReLU(),

nn.Conv2d(64 , 64 , kernel_size= 3 , stride= 1 , padding= 0),

nn.ReLU(),

nn.Flatten(),

nn.Linear(3136 , self.features_dim),

nn.ReLU()

)

def forward (self, observations: torch.Tensor) -> torch.Tensor:

observations = observations.permute(0 , 3 , 1 , 2) # Swap the

return self.cnn(observations)

In the method, the line forward observations =

swaps the channel dimension to the observations.permute(0, 3, 1, 2)

correct place, making the input tensor's shape (batch_size, channels, height,

width). This should fix the RuntimeError you encountered.

But why didn't reported such error before when I didn't divide the image

value by 255.0?

I apologize for the confusion in my previous response. The error is not related

to dividing the image values by 255.0. It seems that the error might not have

been triggered previously due to other changes in the code or a possible

oversight.

The RuntimeError you encountered is related to the shape of the input tensor,

not the values of the tensor itself. Regardless of whether you divide the image

values by 255.0 or not, you still need to ensure that the input tensor has the

correct shape (batch_size, channels, height, width) when passing it through

the CNN in PyTorch. The solution I provided in my previous response should

resolve the error you encountered by swapping the channel dimension to the

correct place.

Didn't you suggest multiply the reward by 10 before? Why are you using 100

again in "reward = (opponent_health_diff - player_health_diff) * 100"?

You are correct, I previously suggested multiplying the reward by 10. My

apologies for the inconsistency in my response. It is up to you to choose the

appropriate scaling factor for the reward. Using 10 or 100 will just scale the

reward differently, and it may affect the learning dynamics of the agent. You

can experiment with different scaling factors to see which one works best for

your specific problem.

Here's the updated reward function with the scaling factor of 10:

python Copy code

def _get_reward (self):

prev_player_health, prev_opponent_health = self.player_health,

player_health_area = self.game_screen_gray[15 : 20 , 32 : 120]

opponent_health_area = self.game_screen_gray[15 : 20 , 136 : 224]

Get health points using the number of pixels above 129.

self.player_health = np. sum (player_health_area > 129) / player_health_area.size

self.opponent_health = np. sum (opponent_health_area > 129) / opponent_health_area.size

player_health_diff = self.player_health - prev_player_health

opponent_health_diff = self.opponent_health - prev_opponent_health

reward = (opponent_health_diff - player_health_diff) * 10

return reward

This reward function uses a scaling factor of 10 instead of 100. Feel free to

experiment with different scaling factors to find the one that works best for

your problem.

The new scripts give the following training logs.

(StreetFighterAI) PS C:\Users\unitec\Documents\AIProjects\street-fighter-ai>

python .\train_cv_sf2_ai.py

Using cuda device

| time/ | |

| fps | 1422 |

| iterations | 1 |

| time_elapsed | 23 |

| total_timesteps | 32768 |

--

| time/ | |

| fps | 1017 |

| iterations | 2 |

| time_elapsed | 64 |

| total_timesteps | 65536 |

| train/ | |

| approx_kl | 0.0051400643 |

| clip_fraction | 0.0152 |

| clip_range | 0.2 |

| entropy_loss | -8.31 |

| explained_variance | -0.00343 |

| learning_rate | 0.0001 |

| loss | 0.759 |

| n_updates | 15 |

| policy_gradient_loss | -0.00343 |

| value_loss | 5.76 |

--

| time/ | |

| fps | 926 |

| iterations | 3 |

| time_elapsed | 106 |

| total_timesteps | 98304 |

| train/ | |

| approx_kl | 0.006181569 |

| clip_fraction | 0.0345 |

| clip_range | 0.2 |

| entropy_loss | -8.31 |

| explained_variance | 0.0949 |

| learning_rate | 0.0001 |

| loss | 7.36 |

| n_updates | 30 |

| policy_gradient_loss | -0.00579 |

| value_loss | 9.39 |

--

| time/ | |

| fps | 891 |

| iterations | 4 |

| time_elapsed | 147 |

| total_timesteps | 131072 |

| train/ | |

| approx_kl | 0.00819987 |

| clip_fraction | 0.057 |

| clip_range | 0.2 |

| entropy_loss | -8.3 |

| explained_variance | 0.187 |

| learning_rate | 0.0001 |

| loss | 0.368 |

| n_updates | 45 |

| policy_gradient_loss | -0.00866 |

| value_loss | 5.51 |

--

| time/ | |

| fps | 871 |

| iterations | 5 |

| time_elapsed | 187 |

| total_timesteps | 163840 |

| train/ | |

| approx_kl | 0.009025519 |

| clip_fraction | 0.0757 |

| clip_range | 0.2 |

| entropy_loss | -8.29 |

| explained_variance | 0.195 |

| learning_rate | 0.0001 |

| loss | 0.716 |

| n_updates | 60 |

| policy_gradient_loss | -0.0113 |

| value_loss | 6.22 |

| time/ | |

| fps | 858 |

| iterations | 6 |

| time_elapsed | 229 |

| total_timesteps | 196608 |

| train/ | |

| approx_kl | 0.010406205 |

| clip_fraction | 0.104 |

| clip_range | 0.2 |

| entropy_loss | -8.28 |

| explained_variance | 0.0929 |

| learning_rate | 0.0001 |

| loss | 12 |

| n_updates | 75 |

| policy_gradient_loss | -0.0127 |

| value_loss | 7.91 |

It seems that again the "value_loss" didn't decrease, and the agent is not

learning much in the first 196608 steps. Could you provide some detailed

revision suggestion to address this problem to train a capable ai agent?

It can be challenging to diagnose the exact issue from just the training logs.

However, I can provide some general suggestions to help improve the

performance of the agent:

Fine-tune hyperparameters: Experiment with different hyperparameters,

such as learning rate, batch size, number of timesteps per iteration, and

the discount factor (gamma). These can significantly impact the agent's

learning process.

Normalize input data: Normalize the input data, e.g., by subtracting the

mean and dividing by the standard deviation, to help the agent learn more

effectively.

Experiment with network architecture: Test different neural network

architectures for the policy and value networks. This could include

changing the number of layers, number of hidden units, or activation

functions.

Modify the reward function: You can try different reward functions to

encourage more desirable behaviors in the agent. For example, you could

provide a small bonus for successful attacks or penalize the agent more

for taking damage. Be cautious not to introduce unintended biases in the

agent's behavior.

Curriculum learning: Gradually increase the difficulty of the environment as

the agent learns. Start with easier opponents and then increase their skill

level as the agent improves.

Exploration vs. exploitation: Experiment with different values of the

exploration parameter (epsilon) to balance exploration and exploitation.

This can help the agent explore the action space more effectively, leading

to better learning.

Pretrain using supervised learning: You can use expert demonstrations or

recorded gameplays to pretrain the agent's policy network. This can help

the agent learn the basics of the game more quickly and improve the

overall learning process.

Remember that training a capable agent might require a lot of

experimentation and fine-tuning. Be patient and keep trying different

configurations to find what works best for your problem.

The following are the training script, the custom env, and the cnn model.

Please provide detailed modification suggestions.

import gym

import cv2

import retro

import numpy as np

from stable_baselines3 import PPO

from stable_baselines3.common.vec_env import DummyVecEnv,

SubprocVecEnv

from stable_baselines3.common.preprocessing import is_image_space,

is_image_space_channels_first

import torch

import torch.nn as nn

from custom_cnn import CustomCNN

from custom_sf2_cv_env import StreetFighterCustomWrapper

def make_env(game, state, seed=0):

def _init():

win_template = cv2.imread('images/pattern_wins_gray.png',

cv2.IMREAD_GRAYSCALE)

lose_template = cv2.imread('images/pattern_lose_gray.png',

cv2.IMREAD_GRAYSCALE)

env = retro.RetroEnv(game=game, state=state,

obs_type=retro.Observations.IMAGE)

env = StreetFighterCustomWrapper(env, win_template, lose_template)

env.seed(seed)

return env

return _init

def main():

Set up the environment and model

game = "StreetFighterIISpecialChampionEdition-Genesis"

state_stages = [

"Champion.Level1.ChunLiVsGuile",

"Champion.Level2.ChunLiVsKen",

"Champion.Level3.ChunLiVsChunLi",

"Champion.Level4.ChunLiVsZangief",

Add other stages as necessary

]

num_envs = 8

env = SubprocVecEnv([make_env(game, state_stages[0], seed=i) for i in

range(num_envs)])

policy_kwargs = {

'features_extractor_class': CustomCNN

}

model = PPO(

"CnnPolicy",

env,

device="cuda",

policy_kwargs=policy_kwargs,

verbose=1,

n_steps=4096,

batch_size=256,

n_epochs=15,

learning_rate=0.0001,

ent_coef=0.001,

clip_range=0.2,

clip_range_vf=None,

gamma=0.99,

gae_lambda=0.95,

max_grad_norm=0.5,

use_sde=False,

sde_sample_freq=-1

)

model.learn(total_timesteps=int(500000))

model.save("ppo_sf2_cnn_new")

if __name__ == "__main__":

main()

import gym

import cv2

import numpy as np

Custom environment wrapper

class StreetFighterCustomWrapper(gym.Wrapper):

def __init__(self, env, win_template, lose_template, threshold=0.65):

super(StreetFighterCustomWrapper, self).__init__(env)

self.win_template = win_template

self.lose_template = lose_template

self.threshold = threshold

self.game_screen_gray = None

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

Update observation space to single-channel grayscale image

self.observation_space = gym.spaces.Box(

low=0.0, high=1.0, shape=(84, 84, 1), dtype=np.float32

)

def _preprocess_observation(self, observation):

self.game_screen_gray = cv2.cvtColor(observation,

cv2.COLOR_BGR2GRAY)

Print the size of self.game_screen_gray

print("self.game_screen_gray size: ", self.game_screen_gray.shape)

Print the size of the observation

print("Observation size: ", observation.shape)

resized_image = cv2.resize(self.game_screen_gray, (84, 84),

interpolation=cv2.INTER_AREA) / 255.0

return np.expand_dims(resized_image, axis=-1)

def _check_game_over(self):

win_res = cv2.matchTemplate(self.game_screen_gray, self.win_template,

cv2.TM_CCOEFF_NORMED)

lose_res = cv2.matchTemplate(self.game_screen_gray,

self.lose_template, cv2.TM_CCOEFF_NORMED)

if np.max(win_res) >= self.threshold:

return True

if np.max(lose_res) >= self.threshold:

return True

return False

def _get_reward(self):

player_health_area = self.game_screen_gray[15:20, 32:120]

oppoent_health_area = self.game_screen_gray[15:20, 136:224]

Get health points using the number of pixels above 129.

player_health = np.sum(player_health_area > 129) /

player_health_area.size

opponent_health = np.sum(oppoent_health_area > 129) /

oppoent_health_area.size

player_health_diff = self.prev_player_health - player_health

opponent_health_diff = self.prev_opponent_health - opponent_health

reward = (opponent_health_diff - player_health_diff) * 100

self.prev_player_health = player_health

self.prev_opponent_health = opponent_health

return reward

def reset(self):

observation = self.env.reset()

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

return self._preprocess_observation(observation)

def step(self, action):

observation, _, _, info = self.env.step(action)

custom_reward = self._get_reward()

custom_done = self._check_game_over() or False

return self._preprocess_observation(observation), custom_reward,

custom_done, info

import gym

import torch

import torch.nn as nn

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

Custom feature extractor (CNN)

class CustomCNN(BaseFeaturesExtractor):

def __init__(self, observation_space: gym.Space):

super(CustomCNN, self).__init__(observation_space, features_dim=512)

self.cnn = nn.Sequential(

nn.Conv2d(1, 32, kernel_size=8, stride=4, padding=0),

nn.ReLU(),

nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0),

nn.ReLU(),

nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0),

nn.ReLU(),

nn.Flatten(),

nn.Linear(3136, self.features_dim),

nn.ReLU()

)

def forward(self, observations: torch.Tensor) -> torch.Tensor:

return self.cnn(observations.permute(0, 3, 1, 2)) # Swap the channel

dimension

Here are some detailed modification suggestions to improve the agent's

performance:

Normalize input data: Update the method in _preprocess_observation

to normalize input data by subtracting StreetFighterCustomWrapper

the mean and dividing by the standard deviation.

python Copy code

def _preprocess_observation (self, observation):

self.game_screen_gray = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(self.game_screen_gray, (84 , 84), interpolation=cv2.INTER_AREA)

Normalize by subtracting mean and dividing by standard deviation

normalized_image = (resized_image - np.mean(resized_image)) /

return np.expand_dims(normalized_image, axis=- 1)

Modify the reward function: Add a small bonus for successful attacks or

penalize the agent more for taking damage.

python Copy code

def _get_reward (self):

...

reward = (opponent_health_diff - player_health_diff) * 100

Add bonus for successful attacks or penalize for taking damage

if opponent_health_diff > player_health_diff:

reward += 10 # Bonus for successful attacks

elif opponent_health_diff < player_health_diff:

reward -= 10 # Penalty for taking damage

self.prev_player_health = player_health

self.prev_opponent_health = opponent_health

return reward

Experiment with different hyperparameters in the function. You main()

can start with the following settings, but feel free to explore further:

python Copy code

model = PPO(

...

n_steps= 2048 ,

batch_size= 64 ,

n_epochs= 10 ,

learning_rate= 0.0003 ,

ent_coef= 0.01 ,

...

)

Experiment with different network architectures for the policy and value

networks. You can test with a deeper or wider CNN architecture in the

class. CustomCNN

python Copy code

class CustomCNN (BaseFeaturesExtractor):

def __init__ (self, observation_space: gym.Space):

super (CustomCNN, self).__init__(observation_space, features_dim=

self.cnn = nn.Sequential(

nn.Conv2d(1 , 32 , kernel_size= 8 , stride= 4 , padding= 0),

nn.ReLU(),

nn.Conv2d(32 , 64 , kernel_size= 4 , stride= 2 , padding= 0),

nn.ReLU(),

nn.Conv2d(64 , 128 , kernel_size= 3 , stride= 1 , padding= 0),

nn.ReLU(),

nn.Flatten(),

nn.Linear(4608 , self.features_dim), # Adjust input size

nn.ReLU()

)

These modifications can help improve the performance of the agent.

Remember that training a capable agent might require a lot of

experimentation and fine-tuning. Be patient and keep trying different

configurations to find what works best for your problem.

May I should decrease the "kernel_size" in the first layer? My input is only

"84*84", so I'm afraid that a "8*8" kernel in the first layer would lose too

much information

Yes, using a smaller kernel size in the first layer could help retain more

information from the input. You can try adjusting the kernel size and stride to

see if it improves the agent's performance. Here's an example of an adjusted

class with a smaller kernel and stride in the first layer: CustomCNN

python Copy code

class CustomCNN (BaseFeaturesExtractor):

def __init__ (self, observation_space: gym.Space):

super (CustomCNN, self).__init__(observation_space, features_dim=

self.cnn = nn.Sequential(

nn.Conv2d(1 , 32 , kernel_size= 4 , stride= 2 , padding= 0),

nn.ReLU(),

nn.Conv2d(32 , 64 , kernel_size= 4 , stride= 2 , padding= 0),

nn.ReLU(),

nn.Conv2d(64 , 64 , kernel_size= 3 , stride= 1 , padding= 0),

nn.ReLU(),

nn.Flatten(),

nn.Linear(2304 , self.features_dim), # Adjust input size

nn.ReLU()

)

Reducing the kernel size and stride in the first layer will result in a larger

output size for the first layer, which might help retain more information.

However, it will also increase the number of parameters in the model,

potentially making the training process slower.

Remember that finding the best architecture for your problem might require

some experimentation. Test different combinations of kernel sizes, strides,

and number of layers to find what works best for your specific problem.

Why are you using even number for the "kernel_size", isn't it much more

common to use odd number?

You are correct that odd-numbered kernel sizes are more commonly used in

convolutional neural networks. This is because odd-numbered kernel sizes

have a center pixel, which can help maintain spatial symmetry when

convolving the image. Using an even-numbered kernel can lead to asymmetry

and potential loss of spatial information.

Here's the modified class with odd-numbered kernel sizes: CustomCNN

python Copy code

class CustomCNN (BaseFeaturesExtractor):

def __init__ (self, observation_space: gym.Space):

super (CustomCNN, self).__init__(observation_space, features_dim=

self.cnn = nn.Sequential(

nn.Conv2d(1 , 32 , kernel_size= 3 , stride= 2 , padding= 1),

nn.ReLU(),

nn.Conv2d(32 , 64 , kernel_size= 3 , stride= 2 , padding= 1),

nn.ReLU(),

nn.Conv2d(64 , 64 , kernel_size= 3 , stride= 1 , padding= 0),

nn.ReLU(),

nn.Flatten(),

nn.Linear(2304 , self.features_dim), # Adjust input size

nn.ReLU()

)

In this example, the first two layers use a kernel size of 3 with a stride of 2 and

padding of 1 to maintain spatial symmetry. Remember that finding the best

architecture requires experimentation, and it is always a good idea to test

different combinations of kernel sizes, strides, and number of layers to find

the best-performing configuration for your specific problem.

Would it be better if I use some classical computer vision networks such as

mobilenetv3 or even inception for this custom cnn here?

Using a pre-trained classical computer vision network, such as MobileNetV3

or Inception, can indeed improve the performance of your AI agent, especially

if the networks have been pre-trained on large datasets. These networks have

proven their effectiveness in various computer vision tasks and can serve as

excellent feature extractors.

However, there are some points to consider:

Compute requirements : Networks like Inception are more complex and

can have significantly more parameters than a custom CNN. This can

increase the computation and memory requirements, potentially slowing

down the training process. MobileNetV3 is designed to be more efficient,

but it may still be heavier than a simple custom CNN.

Transfer learning : If you use pre-trained networks, you can leverage the

power of transfer learning. However, you'll need to ensure that the pre-

trained model's input size matches your environment's observation size (in

this case, 84x84). You may need to modify the architecture or resize your

input accordingly. Additionally, you'll need to remove the classification

layers and connect the feature extractor directly to the policy and value

networks in the PPO model.

Fine-tuning : In some cases, it might be beneficial to fine-tune the pre-

trained model with the observations from your environment, especially if

the original pre-trained model's dataset is quite different from your

problem domain.

In summary, using a classical computer vision network can provide better

performance, but it might come with increased computational cost and

require adjustments to the architecture to fit your specific problem. You can

try implementing one of these networks as a feature extractor and compare

the results with your current custom CNN to determine which one performs

better for your Street Fighter AI agent.

Which network would you recommend for my case of beating the Street

Fighter II game?

For your specific case of beating the Street Fighter II game, I would

recommend starting with a more lightweight network like MobileNetV3. This

network has been designed for efficiency and can offer a good balance

between performance and computational cost, which should be suitable for

the task.

However, you will need to modify the network to accept single-channel

grayscale images with the input size of 84x84, and connect the feature

extractor to the policy and value networks in the PPO model. Additionally, you

may want to fine-tune the pre-trained network using the observations from

your environment to make it more tailored to your task.

Remember that experimenting with different architectures and

hyperparameters can help you identify the best performing model for your

specific problem. It might be worthwhile to try both your custom CNN and the

MobileNetV3 to compare their performance and make an informed decision.

Could you provide the modified network script for using mobilenetv3 as the

customcnn?

Sure! You can use the PyTorch implementation of MobileNetV3 as your

custom feature extractor. Here's the modified network script using

MobileNetV3:

First, install the torchvision package:

bash Copy code

pip install torchvision

Then, modify the CustomCNN to use MobileNetV3:

python Copy code

import gym

import torch

import torch.nn as nn

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

from torchvision.models import mobilenet_v3_small

Custom feature extractor (MobileNetV3)

class CustomCNN (BaseFeaturesExtractor):

def __init__ (self, observation_space: gym.Space):

MobileNetV3 has an output feature size of 1280

super (CustomCNN, self).__init__(observation_space, features_dim=

Load MobileNetV3

self.mobilenet = mobilenet_v3_small(pretrained= True)

Modify the first layer to accept single-channel grayscale

self.mobilenet.features[0][0] = nn.Conv2d(1 , 16 , kernel_size=(

Remove the last layers (classifier) and keep the feature

self.mobilenet = nn.Sequential(* list (self.mobilenet.children())[:-

Add adaptive average pooling to match input size

self.avg_pool = nn.AdaptiveAvgPool2d((1 , 1))

def forward (self, observations: torch.Tensor) -> torch.Tensor:

x = observations.permute(0 , 3 , 1 , 2) # Swap the channel dimension

x = self.mobilenet(x)

x = self.avg_pool(x)

return x.view(x.size(0), - 1) # Flatten the tensor

This script modifies the MobileNetV3 model to accept single-channel

grayscale images and removes the final classification layers, using only the

feature extractor part of the model. You may also want to fine-tune the pre-

trained network with your environment's observations for better performance.

The mobilenet version gives the following errors:

** On entry to SGEMM parameter number 10 had an illegal value

Traceback (most recent call last):

File ".\train_cv_sf2_ai.py", line 67, in <module>

main()

File ".\train_cv_sf2_ai.py", line 62, in main

model.learn(total_timesteps=int(500000))

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\ppo\ppo.py", line 299, in learn

return super(PPO, self).learn(

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\on_policy_algorithm.py", line 234, in

learn

continue_training = self.collect_rollouts(self.env, callback,

self.rollout_buffer, n_rollout_steps=self.n_steps)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\on_policy_algorithm.py", line 166, in

collect_rollouts

actions, values, log_probs = self.policy.forward(obs_tensor)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\policies.py", line 563, in forward

latent_pi, latent_vf, latent_sde = self._get_latent(obs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\policies.py", line 582, in _get_latent

latent_pi, latent_vf = self.mlp_extractor(features)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\torch_layers.py", line 228, in forward

return self.policy_net(shared_latent), self.value_net(shared_latent)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\container.py", line 139, in forward

input = module(input)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\linear.py", line 96, in forward

return F.linear(input, self.weight, self.bias)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\functional.py", line 1847, in linear

return torch._C._nn.linear(input, weight, bias)

RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE when calling

`cublasSgemm(handle, opa, opb, m, n, k, &alpha, a, lda, b, ldb, &beta, c,

ldc)`

This error is likely due to a mismatch in the input size of the MLP extractor in

your policy. Since the MobileNetV3 has an output feature size of 1280, you'll

need to adjust the MLP extractor's input size accordingly.

First, let's update the in the main function: policy_kwargs

python Copy code

policy_kwargs = {

'features_extractor_class' : CustomCNN,

'net_arch' : [1280 , 1280] # Update the network architecture to

}

Then, in the model, you need to specify the parameter: PPO net_arch

python Copy code

model = PPO(

"CnnPolicy" ,

env,

device= "cuda" ,

policy_kwargs=policy_kwargs,

verbose= 1 ,

n_steps= 4096 ,

batch_size= 256 ,

n_epochs= 15 ,

learning_rate= 0.0001 ,

ent_coef= 0.001 ,

clip_range= 0.2 ,

clip_range_vf= None ,

gamma= 0.99 ,

gae_lambda= 0.95 ,

max_grad_norm= 0.5 ,

use_sde= False ,

sde_sample_freq=- 1 ,

net_arch=[1280 , 1280] # Add the net_arch parameter

)

This should resolve the error by correctly setting the input size for the MLP

extractor in the policy.

The problem is not resolved:

(StreetFighterAI) PS C:\Users\unitec\Documents\AIProjects\street-fighter-ai>

python .\train_cv_sf2_ai.py

Using cuda device

** On entry to SGEMM parameter number 10 had an illegal value

Traceback (most recent call last):

File ".\train_cv_sf2_ai.py", line 68, in <module>

main()

File ".\train_cv_sf2_ai.py", line 63, in main

model.learn(total_timesteps=int(500000))

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\ppo\ppo.py", line 299, in learn

return super(PPO, self).learn(

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\on_policy_algorithm.py", line 234, in

learn

continue_training = self.collect_rollouts(self.env, callback,

self.rollout_buffer, n_rollout_steps=self.n_steps)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\on_policy_algorithm.py", line 166, in

collect_rollouts

actions, values, log_probs = self.policy.forward(obs_tensor)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\policies.py", line 563, in forward

latent_pi, latent_vf, latent_sde = self._get_latent(obs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\policies.py", line 582, in _get_latent

latent_pi, latent_vf = self.mlp_extractor(features)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\torch_layers.py", line 227, in forward

shared_latent = self.shared_net(features)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\container.py", line 139, in forward

input = module(input)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\linear.py", line 96, in forward

return F.linear(input, self.weight, self.bias)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\functional.py", line 1847, in linear

return torch._C._nn.linear(input, weight, bias)

RuntimeError: CUDA error: CUBLAS_STATUS_INVALID_VALUE when calling

`cublasSgemm(handle, opa, opb, m, n, k, &alpha, a, lda, b, ldb, &beta, c,

ldc)`

Apologies for the confusion. I made a mistake in my previous response. You

do not need to update the in the main function. Instead, update net_arch

the in the PPO model definition: net_arch

python Copy code

model = PPO(

"CnnPolicy" ,

env,

device= "cuda" ,

policy_kwargs=policy_kwargs,

verbose= 1 ,

n_steps= 4096 ,

batch_size= 256 ,

n_epochs= 15 ,

learning_rate= 0.0001 ,

ent_coef= 0.001 ,

clip_range= 0.2 ,

clip_range_vf= None ,

gamma= 0.99 ,

gae_lambda= 0.95 ,

max_grad_norm= 0.5 ,

use_sde= False ,

sde_sample_freq=- 1 ,

net_arch=[dict (pi=[1280 , 1280], vf=[1280 , 1280])] # Update the

)

By updating the parameter in the PPO model definition, you net_arch

should now be able to run the script without encountering the error.

(StreetFighterAI) PS C:\Users\unitec\Documents\AIProjects\street-fighter-ai>

python .\train_cv_sf2_ai.py

Traceback (most recent call last):

File ".\train_cv_sf2_ai.py", line 68, in <module>

main()

File ".\train_cv_sf2_ai.py", line 43, in main

model = PPO(

TypeError: __init__() got an unexpected keyword argument 'net_arch'

My apologies again, I made another mistake. The parameter net_arch

should be included in the dictionary. Here's the correct policy_kwargs

modification:

python Copy code

policy_kwargs = dict (

features_extractor_class=MobileNetV3LargeCNN,

features_extractor_kwargs= dict (features_dim= 1280),

net_arch=[dict (pi=[1280 , 1280], vf=[1280 , 1280])]

)

model = PPO(

"CnnPolicy" ,

env,

device= "cuda" ,

policy_kwargs=policy_kwargs,

verbose= 1 ,

n_steps= 4096 ,

batch_size= 256 ,

n_epochs= 15 ,

learning_rate= 0.0001 ,

ent_coef= 0.001 ,

clip_range= 0.2 ,

clip_range_vf= None ,

gamma= 0.99 ,

gae_lambda= 0.95 ,

max_grad_norm= 0.5 ,

use_sde= False ,

sde_sample_freq=- 1

)

By updating the dictionary to include the policy_kwargs net_arch

parameter, you should now be able to run the script without encountering the

error.

(StreetFighterAI) PS C:\Users\unitec\Documents\AIProjects\street-fighter-ai>

python .\train_cv_sf2_ai.py

Using cuda device

Traceback (most recent call last):

File ".\train_cv_sf2_ai.py", line 69, in <module>

main()

File ".\train_cv_sf2_ai.py", line 45, in main

model = PPO(

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\ppo\ppo.py", line 152, in __init__

self._setup_model()

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\ppo\ppo.py", line 155, in _setup_model

super(PPO, self)._setup_model()

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\on_policy_algorithm.py", line 120, in

_setup_model

self.policy = self.policy_class(# pytype:disable=not-instantiable

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\policies.py", line 699, in __init__

super(ActorCriticCnnPolicy, self).__init__(

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\policies.py", line 426, in __init__

self.features_extractor = features_extractor_class(self.observation_space,

**self.features_extractor_kwargs)

TypeError: __init__() got an unexpected keyword argument 'features_dim'

I apologize for the confusion. It seems I made another mistake in the

. The correct key should be features_extractor_kwargs feature_dim

instead of . Here's the corrected : features_dim policy_kwargs

python Copy code

policy_kwargs = dict (

features_extractor_class=MobileNetV3LargeCNN,

features_extractor_kwargs= dict (feature_dim= 1280),

net_arch=[dict (pi=[1280 , 1280], vf=[1280 , 1280])]

)

model = PPO(

"CnnPolicy" ,

env,

device= "cuda" ,

policy_kwargs=policy_kwargs,

verbose= 1 ,

n_steps= 4096 ,

batch_size= 256 ,

n_epochs= 15 ,

learning_rate= 0.0001 ,

ent_coef= 0.001 ,

clip_range= 0.2 ,

clip_range_vf= None ,

gamma= 0.99 ,

gae_lambda= 0.95 ,

max_grad_norm= 0.5 ,

use_sde= False ,

sde_sample_freq=- 1

)

With this change, the script should run without the error. Please give it

another try.

(StreetFighterAI) PS C:\Users\unitec\Documents\AIProjects\street-fighter-ai>

python .\train_cv_sf2_ai.py

Using cuda device

Traceback (most recent call last):

File ".\train_cv_sf2_ai.py", line 69, in <module>

main()

File ".\train_cv_sf2_ai.py", line 45, in main

model = PPO(

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\ppo\ppo.py", line 152, in __init__

self._setup_model()

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\ppo\ppo.py", line 155, in _setup_model

super(PPO, self)._setup_model()

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\on_policy_algorithm.py", line 120, in

_setup_model

self.policy = self.policy_class(# pytype:disable=not-instantiable

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\policies.py", line 699, in __init__

super(ActorCriticCnnPolicy, self).__init__(

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\policies.py", line 426, in __init__

self.features_extractor = features_extractor_class(self.observation_space,

**self.features_extractor_kwargs)

TypeError: __init__() got an unexpected keyword argument 'feature_dim'

I apologize once again for the confusion. It appears that I made a mistake in

the keyword argument. The correct keyword argument should be

'features_dim' instead of 'feature_dim'. Here's the corrected

: policy_kwargs

python Copy code

policy_kwargs = dict (

features_extractor_class=MobileNetV3LargeCNN,

features_extractor_kwargs= dict (features_dim= 1280),

net_arch=[dict (pi=[1280 , 1280], vf=[1280 , 1280])]

)

model = PPO(

"CnnPolicy" ,

env,

device= "cuda" ,

policy_kwargs=policy_kwargs,

verbose= 1 ,

n_steps= 4096 ,

batch_size= 256 ,

n_epochs= 15 ,

learning_rate= 0.0001 ,

ent_coef= 0.001 ,

clip_range= 0.2 ,

clip_range_vf= None ,

gamma= 0.99 ,

gae_lambda= 0.95 ,

max_grad_norm= 0.5 ,

use_sde= False ,

sde_sample_freq=- 1

)

With this change, the script should run without the error. Please give it

another try.

Would it be helpful it I added the win/lose bonus to the reward function? If so,

please provide the code

Adding a win/lose bonus to the reward function can be helpful in guiding the

agent to make decisions that lead to winning or losing the game faster. You

can modify the reward function of your environment to include these

bonuses.

First, you need to identify when the agent wins or loses the game. Since you

are using a custom environment, I don't have the exact implementation

details. However, I can give you a general idea of how to implement it.

Here's an example of how you might include the win/lose bonus in the reward

function:

python Copy code

class StreetFighterEnv (gym.Env):

def __init__ (self):

Initialize your environment here

pass

def step (self, action):

Execute the action and observe the new state

new_state, done = self._take_action(action)

Calculate the base reward based on the game state

reward = self._calculate_base_reward(new_state)

Add a bonus if the agent won or lost the game

if done:

if self._did_agent_win(new_state):

reward += 1000 # Win bonus

else :

reward -= 1000 # Lose bonus

return new_state, reward, done, {}

def _take_action (self, action):

Execute the action and return the new state and whether

pass

def _calculate_base_reward (self, state):

Calculate the base reward based on the game state

pass

def _did_agent_win (self, state):

Check if the agent won the game based on the game state

pass

Replace the and other placeholders # Initialize your environment here

with your specific implementation. You can adjust the win/lose bonus values

(e.g., 1000 and -1000) according to your needs.

Remember to import at the beginning of your script: gym

python Copy code

import gym

After implementing the win/lose bonus in your custom environment, the agent

should receive additional feedback to help it learn to make better decisions

that lead to winning or losing the game faster.

How can I see the details of the default reward returned by

"self.env.step(action)" for the Street Fighter II game?

The Street Fighter II environment you are using is most likely based on the

OpenAI Gym Retro framework, which allows using classic video games as

reinforcement learning environments. The Retro framework does not provide

access to the default reward function directly. However, you can inspect the

game's integration files to get an idea of how the reward is calculated.

For Street Fighter II, you can find the integration files in the gym-retro

package. The exact path may vary depending on your installation, but it

should be similar to this:

javascript Copy code

<path-to-your-python-environment> /lib/ python<version> /site-packages/

In this directory, look for a file named . This file contains data.json

information about the memory locations, variables, and reward function for

the game.

Here's a sample reward function extracted from a file for the data.json

Street Fighter II game:

json Copy code

"reward" : {

"variables" : {

"reward" : {

"address" : 65488 ,

"type" : ">u2"

}

} ,

"delta" : true ,

"reward" : "reward"

}

In this example, the reward is based on the value stored at memory address

(decimal), and it has a 2-byte unsigned integer () data type. 65488 >u2

The reward function uses the value at this memory address as the reward.

The field being set to means that the agent receives the delta true

difference in reward between two consecutive steps.

To see how the reward value changes during the game, you can modify your

custom environment's step function to print the value at the specified

memory address:

python Copy code

def step (self, action):

Execute the action using the Gym Retro environment

new_state, reward, done, info = self.env.step(action)

Get the raw reward value from the specified memory address

raw_reward = self.env.data.lookup_value('65488')

Print the raw reward

print ('Raw Reward:' , raw_reward)

Your other environment code here

return new_state, reward, done, info

This should help you understand the default reward function's behavior

during the game. Keep in mind that the exact memory address and data type

may vary depending on the specific version of Street Fighter II and the Gym

Retro integration files you are using.

{

"info": {

"continuetimer": {

"address": 16744917,

"type": "|u1"

},

"enemy_health": {

"address": 16745154,

"type": ">i2"

},

"enemy_matches_won": {

"address": 16745559,

"type": ">u4"

},

"health": {

"address": 16744514,

"type": ">i2"

},

"matches_won": {

"address": 16744922,

"type": "|u1"

},

"score": {

"address": 16744936,

"type": ">d4"

}

}

}

"data.json" does not contain a "reward" variable. I want to know how the

default reward is calculated.

Apologies for the confusion. It seems that the version of Street Fighter II you

are using does not have a specified reward function in the file. In data.json

this case, the environment most likely uses a default reward function provided

by Gym Retro, which is based on the difference in scores between two

consecutive steps.

To see how the reward is calculated, you can print the values of the score in

your custom environment's step function and observe how the reward

changes:

python Copy code

def step (self, action):

Execute the action using the Gym Retro environment

new_state, reward, done, info = self.env.step(action)

Get the score value

score = info['score']

Print the score and reward

print ('Score:' , score, 'Reward:' , reward)

Your other environment code here

return new_state, reward, done, info

By printing the score and reward values during the game, you should be able

to gain insights into how the default reward is calculated. Keep in mind that

this default reward function may not be optimal for training your agent, so you

might still want to consider creating a custom reward function based on the

game's state, health, or other relevant factors.

I used the following script to train my ai agent, and I set a "save_freq" in

"CheckpointCallback", but the checkpoint didn't get saved, the only saved

model is a "final" version. Could you help me fix this problem?

import os

import gym

import cv2

import retro

import numpy as np

from stable_baselines3 import PPO

from stable_baselines3.common.vec_env import DummyVecEnv,

SubprocVecEnv

from stable_baselines3.common.preprocessing import is_image_space,

is_image_space_channels_first

from stable_baselines3.common.callbacks import BaseCallback,

CheckpointCallback

import torch

import torch.nn as nn

from custom_cnn import CustomCNN

from custom_sf2_cv_env import StreetFighterCustomWrapper

def make_env(game, state, seed=0):

def _init():

win_template = cv2.imread('images/pattern_win_gray.png',

cv2.IMREAD_GRAYSCALE)

lose_template = cv2.imread('images/pattern_lose_gray.png',

cv2.IMREAD_GRAYSCALE)

env = retro.RetroEnv(game=game, state=state,

obs_type=retro.Observations.IMAGE)

env = StreetFighterCustomWrapper(env, win_template, lose_template)

env.seed(seed)

return env

return _init

def main():

Set up the environment and model

game = "StreetFighterIISpecialChampionEdition-Genesis"

state_stages = [

"Champion.Level1.ChunLiVsGuile",

"Champion.Level2.ChunLiVsKen",

"Champion.Level3.ChunLiVsChunLi",

"Champion.Level4.ChunLiVsZangief",

Add other stages as necessary

]

num_envs = 8

env = SubprocVecEnv([make_env(game, state_stages[0], seed=i) for i in

range(num_envs)])

env = SubprocVecEnv([make_env(game, state_stages[0], seed=i) for i in

range(num_envs)])

policy_kwargs = {

'features_extractor_class': CustomCNN

}

model = PPO(

"CnnPolicy",

env,

device="cuda",

policy_kwargs=policy_kwargs,

verbose=1,

n_steps=100,

batch_size=64,

n_epochs=10,

learning_rate=0.0003,

ent_coef=0.01,

clip_range=0.2,

clip_range_vf=None,

gamma=0.99,

gae_lambda=0.95,

max_grad_norm=0.5,

use_sde=False,

sde_sample_freq=-1

)

Set the save directory

save_dir = "trained_models_cv_test"

os.makedirs(save_dir, exist_ok=True)

Set up callbacks

stage_interval = 500 # Number of steps between increasing stages

checkpoint_callback = CheckpointCallback(save_freq=stage_interval,

save_path=save_dir, name_prefix="ppo_chunli")

model.learn(total_timesteps=int(1500), callback=[checkpoint_callback])

Save the final model

model.save(os.path.join(save_dir, "ppo_sf2_chunli_final.zip"))

if __name__ == "__main__":

main()

The issue is likely because you are passing a list of callbacks as a single-

element list in method. You should pass the callbacks model.learn()

directly without the list brackets. Modify the following line:

python Copy code

model.learn(total_timesteps= int (1500), callback=[checkpoint_callback])

to:

python Copy code

model.learn(total_timesteps= int (1500), callback=checkpoint_callback)

This should now save the checkpoints correctly.

It didn't solve the problem. I still only get one "final" model.

My apologies for the confusion. I just realized that the issue is caused by the

total number of timesteps being too low. In your script, you set the total

timesteps to 1500, which is less than the stage interval (500) multiplied by

the number of environments (8), so the checkpoint will not be saved. To fix

the issue, you should increase the total timesteps.

For example, you can increase the total timesteps to 4000:

python Copy code

model.learn(total_timesteps= int (4000), callback=checkpoint_callback)

This will allow the agent to reach the stage interval multiplied by the number

of environments, which should trigger the saving of checkpoints.

Keep in mind that you might need to adjust the total timesteps and stage

interval according to your specific training requirements.

So what does the "n_steps" mean in "PPO"?

In the PPO (Proximal Policy Optimization) algorithm, refers to the n_steps

number of steps the agent takes in the environment to collect data before

performing an update. In other words, it determines the size of the rollouts or

trajectories that the agent generates during training.

Each rollout is a sequence of state, action, reward, next state, and done flag

tuples, and the agent uses these rollouts to estimate advantages and update

its policy and value functions.

A larger value will make the agent collect more data before n_steps

performing an update, potentially improving the stability of the learning

process but increasing the time it takes to complete each update. Conversely,

a smaller value will make the agent update more frequently based n_steps

on smaller amounts of data, which can speed up learning but may result in a

less stable training process.

In your code, you have set , which means the agent will collect n_steps=100

100 steps of data in the environment before performing an update. This value

should be chosen based on the specific problem and the desired balance

between learning speed and stability.

model = PPO(

"CnnPolicy",

env,

device="cuda",

policy_kwargs=policy_kwargs,

verbose=1,

n_steps=5400,

batch_size=64,

n_epochs=10,

learning_rate=0.0003,

ent_coef=0.01,

clip_range=0.2,

clip_range_vf=None,

gamma=0.99,

gae_lambda=0.95,

max_grad_norm=0.5,

use_sde=False,

sde_sample_freq=-1

)

What's the "batch_size" here in "PPO"

In the PPO (Proximal Policy Optimization) algorithm, refers to batch_size

the number of samples used in a single optimization step when updating the

policy and value functions.

When the agent collects rollouts (sequences of state, action, reward, next

state, and done flag tuples) during training, it processes the collected data in

batches to perform the gradient-based optimization. The batch_size

parameter determines the number of samples taken from the collected data

to compute the gradients and update the neural network parameters in each

iteration.

A larger will generally result in a more stable training process batch_size

since the gradients will be computed based on more data, but it will also

require more memory and may take longer to process each update.

Conversely, a smaller will require less memory and may speed batch_size

up learning but may result in a less stable training process.

In your code, you have set , which means the agent will use batch_size=64

64 samples to compute the gradients and update the policy and value

functions during each optimization iteration. This value should be chosen

based on the specific problem and the desired balance between learning

stability and computational efficiency.

Please check the following training script:

import os

import gym

import cv2

import retro

import numpy as np

from stable_baselines3 import PPO

from stable_baselines3.common.vec_env import DummyVecEnv,

SubprocVecEnv

from stable_baselines3.common.preprocessing import is_image_space,

is_image_space_channels_first

from stable_baselines3.common.callbacks import BaseCallback,

CheckpointCallback

import torch

import torch.nn as nn

from custom_cnn import CustomCNN

from custom_sf2_cv_env import StreetFighterCustomWrapper

class StageIncreaseCallback(BaseCallback):

def __init__(self, stages, stage_interval, save_dir, verbose=0):

super(StageIncreaseCallback, self).__init__(verbose)

self.stages = stages

self.stage_interval = stage_interval

self.save_dir = save_dir

self.current_stage = 0

def _on_step(self) -> bool:

if self.n_calls % self.stage_interval == 0 and self.current_stage <

len(self.stages) - 1:

self.current_stage += 1

new_state = self.stages[self.current_stage]

self.training_env.env_method("load_state", new_state, indices=None)

self.model.save(os.path.join(self.save_dir,

f"ppo_chunli_stage_{self.current_stage}.zip"))

return True

def make_env(game, state, seed=0):

def _init():

win_template = cv2.imread('images/pattern_win_gray.png',

cv2.IMREAD_GRAYSCALE)

lose_template = cv2.imread('images/pattern_lose_gray.png',

cv2.IMREAD_GRAYSCALE)

env = retro.RetroEnv(game=game, state=state,

obs_type=retro.Observations.IMAGE)

env = StreetFighterCustomWrapper(env, win_template, lose_template)

env.seed(seed)

return env

return _init

def main():

Set up the environment and model

game = "StreetFighterIISpecialChampionEdition-Genesis"

state_stages = [

"Champion.Level1.ChunLiVsGuile",

"Champion.Level2.ChunLiVsKen",

"Champion.Level3.ChunLiVsChunLi",

"Champion.Level4.ChunLiVsZangief",

Add other stages as necessary

]

num_envs = 8

env = SubprocVecEnv([make_env(game, state_stages[0], seed=i) for i in

range(num_envs)])

env = SubprocVecEnv([make_env(game, state_stages[0], seed=i) for i in

range(num_envs)])

policy_kwargs = {

'features_extractor_class': CustomCNN

}

model = PPO(

"CnnPolicy",

env,

device="cuda",

policy_kwargs=policy_kwargs,

verbose=1,

n_steps=5400,

batch_size=64,

n_epochs=10,

learning_rate=0.0003,

ent_coef=0.01,

clip_range=0.2,

clip_range_vf=None,

gamma=0.99,

gae_lambda=0.95,

max_grad_norm=0.5,

use_sde=False,

sde_sample_freq=-1

)

Set the save directory

save_dir = "trained_models_cv_test"

os.makedirs(save_dir, exist_ok=True)

Set up callbacks

stage_interval = 5400 # stage_interval * num_envs =

total_steps_per_stage

checkpoint_interval = 2700 # checkpoint_interval * num_envs =

total_steps_per_checkpoint

checkpoint_callback = CheckpointCallback(save_freq=checkpoint_interval,

save_path=save_dir, name_prefix="ppo_chunli")

stage_increase_callback = StageIncreaseCallback(state_stages,

stage_interval, save_dir)

model.learn(

total_timesteps=int(129600), # total_timesteps = stage_interval *

num_envs * num_stages

callback=[checkpoint_callback, stage_increase_callback]

)

Save the final model

model.save(os.path.join(save_dir, "ppo_sf2_chunli_final.zip"))

if __name__ == "__main__":

main()

I found that during training, the size of the checkpoint file continues to grow.

Why is that?

The growing size of the checkpoint file during training is likely due to the

increasing size of the replay buffer or other internal states that are saved

along with the model. Stable Baselines3 saves the model and its internal

state, including optimizer states and other information required for training,

when you call the method. save()

In your specific case, the cause of the growing file size might not be the

replay buffer since PPO doesn't use one. Instead, it could be due to the

optimizer states or other internal states that get stored with the model during

training. As training progresses and the model updates its weights, the

optimizer states and internal states may grow in size.

However, this growth should not be drastic and should stabilize after some

time. If you find the size of the checkpoint files to be unmanageable or the

growth to be unexpected, consider checking if there are any customizations

or modifications to the model or training process that might be causing the

issue.

import gym

import cv2

import numpy as np

Custom environment wrapper

class StreetFighterCustomWrapper(gym.Wrapper):

def __init__(self, env, win_template, lose_template, threshold=0.65):

super(StreetFighterCustomWrapper, self).__init__(env)

self.win_template = win_template

self.lose_template = lose_template

self.threshold = threshold

self.game_screen_gray = None

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

Update observation space to single-channel grayscale image

self.observation_space = gym.spaces.Box(

low=0.0, high=1.0, shape=(84, 84, 1), dtype=np.float32

)

def _preprocess_observation(self, observation):

self.game_screen_gray = cv2.cvtColor(observation,

cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(self.game_screen_gray, (84, 84),

interpolation=cv2.INTER_AREA) / 255.0

return np.expand_dims(resized_image, axis=-1)

def _get_win_or_lose_bonus(self):

if self.prev_player_health > self.prev_opponent_health:

print('You win!')

return 200

else:

print('You lose!')

return -200

def _get_reward(self):

player_health_area = self.game_screen_gray[15:20, 32:120]

oppoent_health_area = self.game_screen_gray[15:20, 136:224]

Get health points using the number of pixels above 129.

player_health = np.sum(player_health_area > 129) /

player_health_area.size

opponent_health = np.sum(oppoent_health_area > 129) /

oppoent_health_area.size

player_health_diff = self.prev_player_health - player_health

opponent_health_diff = self.prev_opponent_health - opponent_health

reward = (opponent_health_diff - player_health_diff) * 100 # max would

be 100

self.prev_player_health = player_health

self.prev_opponent_health = opponent_health

Print the health values of the player and the opponent

print("Player health: %f Opponent health:%f" % (player_health,

opponent_health))

return reward

def reset(self):

observation = self.env.reset()

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

return self._preprocess_observation(observation)

def step(self, action):

observation, _, _, info = self.env.step(action)

observation, _reward, _done, info = self.env.step(action)

custom_reward = self._get_reward()

custom_done = False

if self.prev_player_health <= 0.00001 or self.prev_opponent_health <=

0.00001:

custom_reward += self._get_win_or_lose_bonus()

custom_done = True

return self._preprocess_observation(observation), custom_reward,

custom_done, info

The size of the game screen is resized to 84*84. Is there a better choice than

this specific size?

The choice of resizing the game screen to 84x84 is a common one in the

reinforcement learning community, particularly for Atari games, due to the

Deep Q-Network (DQN) paper by DeepMind (Mnih et al., 2015). The authors

of the paper used 84x84 pixel images as input to their neural network, as

they found it to be a good trade-off between computational efficiency and

preserving enough information for the agent to learn effectively.

However, the optimal choice for resizing the game screen depends on the

specific game and the model you are using. In general, you should consider

the following factors when choosing the size:

Computational efficiency: Smaller images will have fewer pixels, leading to

lower memory and computational requirements, which can speed up

training.

Information preservation: Downsizing the image too much may cause

important details to be lost, making it more difficult for the agent to learn

effective strategies.

Model architecture: The size of the input image should be compatible with

the model architecture. For instance, some convolutional neural networks

(CNNs) may require specific input sizes.

For Street Fighter II, 84x84 might still be a reasonable choice. However, if you

notice that the agent is struggling to learn or if you think there might be

important details that are lost in downsampling, you can experiment with

different sizes. You could try using larger sizes, such as 128x128 or 160x160,

to see if the agent's performance improves. Keep in mind that larger image

sizes will increase computational requirements and may require adjustments

to the model architecture.

The original size of the game screen was 256*200. If I omit every one pixel,

the size would shrink to 128*100, which sounds like a proper size. How is this

strategy compared with using "cv2.INTER_AREA" interpolation? I think one

advantage is the calculation speed.

Omitting every other pixel to downsample the image to 128x100 is a valid

strategy, and it can indeed be faster than using cv2.INTER_AREA

interpolation. However, there are a few points to consider:

Information preservation: When you omit every other pixel, you may lose

more information than when using . cv2.INTER_AREA cv2.INTER_AREA

takes into account the surrounding pixels and uses a weighted average,

which can better preserve important details in the image.

Aspect ratio: The original game screen has an aspect ratio of 256:200,

which is 1.28:1. When resizing to 84x84, you are changing the aspect ratio

to 1:1, which may introduce distortion. Using the 128x100 size preserves

the aspect ratio, which can be beneficial for the agent's perception of the

game.

Computational efficiency: While omitting every other pixel can be faster

than using , the resulting image size is larger (128x100 cv2.INTER_AREA

compared to 84x84). This will increase the computational requirements for

the neural network and may slow down training.

In summary, the strategy of omitting every other pixel to resize the image to

128x100 has its advantages, such as preserving the aspect ratio and

potentially faster resizing. However, it may lose more information than using

and increase the computational requirements for the cv2.INTER_AREA

neural network. You can experiment with both strategies to see which one

works better for your specific problem and agent.

What if I don't resize the image and use convolutional neural networks

directly?

You can certainly use convolutional neural networks (CNNs) directly on the

original image size (256x200) without resizing. However, there are a few

factors to consider:

Computational complexity: Larger input images will increase the number of

parameters and computational complexity of the CNN, which may result in

longer training times and higher memory requirements. This could be an

issue if you have limited computational resources or need to train the

model quickly.

Overfitting: With more parameters and a larger input size, the model may

be more prone to overfitting, especially if the available data is limited.

Regularization techniques, such as dropout or weight decay, can help

mitigate this issue, but it's still a factor to consider.

Scale-invariance: Using the original image size could make it more

challenging for the CNN to learn scale-invariant features, especially if the

objects in the image (e.g., characters in a game) vary in size. Resizing the

image can help normalize the scale of objects, making it easier for the

CNN to learn relevant features.

Overall, it's possible to use CNNs directly on the original image size, but it

may come with trade-offs in terms of computational complexity, risk of

overfitting, and scale-invariance. Experimenting with different image sizes

and network architectures can help you find the optimal balance for your

specific problem and requirements.

Would it help if I train the agent with different opponents randomly during

training? If so, please provide the training script for changing between

different game state during training.

Yes, training your agent against different opponents can help improve the

agent's performance and generalization. By exposing the agent to diverse

opponents, it can learn a more robust policy that can adapt to different

situations.

Here's an updated training script that changes the game state (opponent)

randomly during training:

python Copy code

import os

import random

import gym

import cv2

import retro

import numpy as np

from stable_baselines3 import PPO

from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv

from stable_baselines3.common.callbacks import BaseCallback, CheckpointCallback

import torch

import torch.nn as nn

from custom_cnn import CustomCNN

from custom_sf2_cv_env import StreetFighterCustomWrapper

class RandomOpponentChangeCallback (BaseCallback):

def __init__ (self, stages, change_interval, verbose= 0):

super (RandomOpponentChangeCallback, self).__init__(verbose)

self.stages = stages

self.change_interval = change_interval

def _on_step (self) -> bool :

if self.n_calls % self.change_interval == 0 :

new_state = random.choice(self.stages)

self.training_env.env_method("load_state" , new_state,

return True

def make_env (game, state, seed= 0):

def _init ():

win_template = cv2.imread('images/pattern_win_gray.png' , cv2.IMREAD_GRAYSCALE)

lose_template = cv2.imread('images/pattern_lose_gray.png' ,

env = retro.RetroEnv(game=game, state=state, obs_type=retro.Observations.IMAGE)

env = StreetFighterCustomWrapper(env, win_template, lose_template)

env.seed(seed)

return env

return _init

def main ():

game = "StreetFighterIISpecialChampionEdition-Genesis"

state_stages = [

"Champion.Level1.ChunLiVsGuile" ,

"Champion.Level2.ChunLiVsKen" ,

"Champion.Level3.ChunLiVsChunLi" ,

"Champion.Level4.ChunLiVsZangief" ,

Add other stages as necessary

]

num_envs = 8

env = SubprocVecEnv([make_env(game, state_stages[0], seed=i) for

policy_kwargs = {

'features_extractor_class' : CustomCNN

}

model = PPO(

"CnnPolicy" ,

env,

device= "cuda" ,

policy_kwargs=policy_kwargs,

verbose= 1 ,

n_steps= 5400 ,

batch_size= 64 ,

n_epochs= 10 ,

learning_rate= 0.0003 ,

ent_coef= 0.01 ,

clip_range= 0.2 ,

clip_range_vf= None ,

gamma= 0.99 ,

gae_lambda= 0.95 ,

max_grad_norm= 0.5 ,

use_sde= False ,

sde_sample_freq=- 1

)

save_dir = "trained_models_cv_test"

os.makedirs(save_dir, exist_ok= True)

change_interval = 5400

checkpoint_interval = 2700

checkpoint_callback = CheckpointCallback(save_freq=checkpoint_interval,

random_opponent_change_callback = RandomOpponentChangeCallback(state_stages,

model.learn(

total_timesteps= int (129600),

callback=[checkpoint_callback, random_opponent_change_callback]

)

model.save(os.path.join(save

| time/ | |

| fps | 746 |

| iterations | 10 |

| time_elapsed | 578 |

| total_timesteps | 432000 |

| train/ | |

| approx_kl | 0.018104717 |

| clip_fraction | 0.227 |

| clip_range | 0.2 |

| entropy_loss | -8.27 |

| explained_variance | 0.538 |

| learning_rate | 0.0003 |

| loss | 0.117 |

| n_updates | 90 |

| policy_gradient_loss | -0.00673 |

| value_loss | 7.65 |

How can I tell from these parameters that the training is going on the right

track?

To determine if the training is going in the right direction, you should pay

attention to a few key metrics:

: Explained variance is a measure of how well the explained_variance

value function is approximating the returns. A higher value (close to 1)

indicates a better approximation, which generally means the agent is

learning well. It's important to monitor this value over time, looking for

consistent improvement or stabilization at a high value.

: The loss value should decrease over time, indicating that the loss

model is optimizing its policy and value function. However, it may not

always be strictly decreasing, as some fluctuations are normal during the

training process.

: This is the loss associated with the policy policy_gradient_loss

network. It should generally decrease over time, indicating that the policy

is converging towards a better solution. However, as with the overall loss,

some fluctuations are normal.

: This is the loss associated with the value network. It should value_loss

generally decrease over time, indicating that the value function is learning

to better approximate the expected returns. Again, some fluctuations are

normal.

: Entropy loss measures the diversity of the action entropy_loss

distribution. A higher entropy loss indicates a more diverse action

distribution, which can be useful for exploration. It's not unusual for the

entropy loss to decrease over time, as the agent becomes more confident

in its actions. However, if it drops too low too quickly, the agent might not

be exploring enough.

: This is the approximate KL divergence between the old approx_kl

policy and the new one after the update. It is a measure of how much the

policy is changing during each update. In PPO, the objective is to keep this

value small to prevent large policy updates that can destabilize training.

: This is the fraction of the gradient updates that were clip_fraction

clipped by the PPO's clipping mechanism. If this value is consistently very

high or very low, it might indicate that the clip range needs to be adjusted.

To ensure your training is on the right track, you should see a decrease in

losses and an increase in explained variance as the training progresses.

Additionally, the agent's in-game performance should improve. It's a good

idea to visualize the agent's behavior during training or to test the agent

periodically to see if it's learning to play the game effectively.

Why is my "entropy_loss" and "policy_gradient_loss" always negative?

The negative values for and are entropy_loss policy_gradient_loss

not a cause for concern, and here's why:

: Entropy loss measures the diversity or randomness in the entropy_loss

probability distribution of actions. A higher entropy loss indicates a more

diverse action distribution, which can be useful for exploration. Entropy is

usually calculated as the negative sum of probabilities multiplied by their

logarithms. Since probabilities are always between 0 and 1, their

logarithms are negative, making the entropy (and consequently, entropy

loss) a positive value. However, in the optimization process, the entropy

loss is often multiplied by a negative coefficient (like in your case) -0.01

to encourage exploration. This multiplication results in a negative entropy

loss value.

: The policy gradient loss is negative because the policy_gradient_loss

goal of the training process is to maximize the expected cumulative

rewards. The negative sign indicates that, on average, the algorithm is

making updates that increase the probability of actions with higher-than-

average returns. This is the desired behavior, as it helps the agent learn to

perform actions that lead to higher rewards.

It's important to monitor these metrics over time to see if they're converging

or stabilizing at reasonable values, rather than focusing solely on their signs.

Could you modify the following script to use MobileNetV3 as the feature

extracting network for the PPO reinforcement learning agent?

To use MobileNetV3 as the feature extracting network for the PPO agent, you

need to create a custom feature extractor class that wraps the MobileNetV3

architecture. You can use the or torchvision.models.mobilenet_v3_small

model, depending on your torchvision.models.mobilenet_v3_large

computational resources and desired model size. Here's the modified code:

First, make sure you have torchvision installed:

bash Copy code

pip install torchvision

Next, modify your training script:

python Copy code

import os

import gym

import cv2

import retro

import numpy as np

from stable_baselines3 import PPO

from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv

from stable_baselines3.common.preprocessing import is_image_space,

from stable_baselines3.common.callbacks import BaseCallback, CheckpointCallback

import torch

import torch.nn as nn

from torchvision.models import mobilenet_v3_small

from custom_sf2_cv_env import StreetFighterCustomWrapper

Custom MobileNetV3 Feature Extractor

class MobileNetV3Extractor (nn.Module):

def __init__ (self, feature_dim= 256):

super (MobileNetV3Extractor, self).__init__()

self.mobilenet = mobilenet_v3_small(pretrained= True)

self.adaptive_pool = nn.AdaptiveAvgPool2d((1 , 1))

self.fc = nn.Linear(576 , feature_dim)

def forward (self, x):

x = self.mobilenet.features(x)

x = self.adaptive_pool(x)

x = torch.flatten(x, 1)

x = self.fc(x)

return x

... rest of the script remains the same

def main ():

... rest of the main function remains the same

policy_kwargs = {

'features_extractor_class' : MobileNetV3Extractor,

'features_dim' : 256

}

model = PPO(

... rest of the model definition remains the same

policy_kwargs=policy_kwargs,

)

... rest of the main function remains the same

if __name__ == "__main__" :

main()

In the modified code, we created the class that MobileNetV3Extractor

takes the original MobileNetV3 model, extracts features, and passes them

through a linear layer to match the desired output feature dimension. The

dictionary has been updated to use the policy_kwargs

class. MobileNetV3Extractor

Keep in mind that MobileNetV3 expects a 3-channel input image, so you'll

need to adjust the class to output RGB StreetFighterCustomWrapper

images instead of grayscale images. Moreover, the default input size for

MobileNetV3 is 224x224, so you may want to resize the game screen

accordingly.

Please note that using a larger architecture like MobileNetV3 will likely

increase the training time and computational resources needed for training.

Could you modify the following script to use MobileNetV3 as the feature

extracting network for the PPO reinforcement learning agent?

import gym

import torch

import torch.nn as nn

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

from torchvision.models import mobilenet_v3_small

Custom feature extractor (CNN)

class CustomCNN(BaseFeaturesExtractor):

def __init__(self, observation_space: gym.Space):

super(CustomCNN, self).__init__(observation_space, features_dim=512)

self.cnn = nn.Sequential(

nn.Conv2d(1, 32, kernel_size=5, stride=2, padding=0),

nn.ReLU(),

nn.Conv2d(32, 64, kernel_size=5, stride=2, padding=0),

nn.ReLU(),

nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0),

nn.ReLU(),

nn.Flatten(),

nn.Linear(16384, self.features_dim),

nn.ReLU()

)

def forward(self, observations: torch.Tensor) -> torch.Tensor:

return self.cnn(observations.permute(0, 3, 1, 2)) # Swap the channel

dimension

To use MobileNetV3 as the feature extracting network, you can create a

custom feature extractor class that wraps the MobileNetV3 architecture.

Here's the modified code:

python Copy code

import gym

import torch

import torch.nn as nn

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

from torchvision.models import mobilenet_v3_small

Custom MobileNetV3 Feature Extractor

class MobileNetV3Extractor (BaseFeaturesExtractor):

def __init__ (self, observation_space: gym.Space, feature_dim= 256

super (MobileNetV3Extractor, self).__init__(observation_space,

self.mobilenet = mobilenet_v3_small(pretrained= True)

self.adaptive_pool = nn.AdaptiveAvgPool2d((1 , 1))

self.fc = nn.Linear(576 , self.features_dim)

def forward (self, observations: torch.Tensor) -> torch.Tensor:

x = observations.permute(0 , 3 , 1 , 2) # Swap the channel dimension

x = self.mobilenet.features(x)

x = self.adaptive_pool(x)

x = torch.flatten(x, 1)

x = self.fc(x)

return x

In the modified code, we created the class that MobileNetV3Extractor

takes the original MobileNetV3 model, extracts features, and passes them

through a linear layer to match the desired output feature dimension.

Keep in mind that MobileNetV3 expects a 3-channel input image, so you'll

need to adjust the class to output RGB StreetFighterCustomWrapper

images instead of grayscale images. Moreover, the default input size for

MobileNetV3 is 224x224, so you may want to resize the game screen

accordingly.

Please note that using a larger architecture like MobileNetV3 will likely

increase the training time and computational resources needed for training.

I noticed you turned the "pretrained" flag on as "True". What data type does

the pretrained mobilenet require? "np.uint8" or "np.float32"? Besides, what

image preprocessings are required? Perhaps dividing by 255.0?

When using a pretrained MobileNetV3 from , the expected torchvision

input data type is . The image should be preprocessed with torch.float32

the following steps:

Convert the image to a torch.Tensor with values in the range of [0, 1]. You

can achieve this by dividing your NumPy array by 255.0 and then

converting it to a PyTorch tensor.

Normalize the image using the mean and standard deviation values

specified by the pretraining dataset. For ImageNet, the mean is [0.485,

and the standard deviation is . 0.456, 0.406] [0.229, 0.224, 0.225]

You can use the function to torchvision.transforms.Normalize

perform this normalization.

Here's an example of how to preprocess the image in your custom

environment wrapper:

python Copy code

import torch

from torchvision.transforms import Normalize

class StreetFighterCustomWrapper (gym.Wrapper):

...

def __init__ (self, env, win_template, lose_template, threshold=

...

self.normalize = Normalize(mean=[0.485 , 0.456 , 0.406], std=[

def _preprocess_observation (self, observation):

Convert the image to float32 and scale the values to [0,

observation = observation.astype(np.float32) / 255.0

Convert the NumPy array to a PyTorch tensor

observation = torch.from_numpy(observation)

Apply normalization

observation = self.normalize(observation)

Add a batch dimension to match the model input shape

observation = observation.unsqueeze(0)

return observation

Remember that you'll also need to adjust the StreetFighterCustomWrapper

class to output RGB images instead of grayscale images for compatibility with

MobileNetV3.

(StreetFighterAI) PS C:\Users\unitec\Documents\AIProjects\street-fighter-ai>

python .\train_cv_sf2_ai.py

Using cuda device

Current state: Champion.Level10.ChunLiVsVega

| time/ | |

| fps | 3021 |

| iterations | 1 |

| time_elapsed | 14 |

| total_timesteps | 43200 |

Current state: Champion.Level9.ChunLiVsBalrog

| time/ | |

| fps | 1119 |

| iterations | 2 |

| time_elapsed | 77 |

| total_timesteps | 86400 |

| train/ | |

| approx_kl | 0.008596159 |

| clip_fraction | 0.0861 |

| clip_range | 0.2 |

| entropy_loss | -8.31 |

| explained_variance | 0.000249 |

| learning_rate | 0.0003 |

| loss | 0.0448 |

| n_updates | 10 |

| policy_gradient_loss | -0.00293 |

| value_loss | 63.7 |

Current state: Champion.Level7.ChunLiVsEHonda

| time/ | |

| fps | 926 |

| iterations | 3 |

| time_elapsed | 139 |

| total_timesteps | 129600 |

| train/ | |

| approx_kl | 0.015845723 |

| clip_fraction | 0.154 |

| clip_range | 0.2 |

| entropy_loss | -8.3 |

| explained_variance | 0.0515 |

| learning_rate | 0.0003 |

| loss | 17.5 |

| n_updates | 20 |

| policy_gradient_loss | -0.0113 |

| value_loss | 22.3 |

Current state: Champion.Level6.ChunLiVsRyu

| time/ | |

| fps | 854 |

| iterations | 4 |

| time_elapsed | 202 |

| total_timesteps | 172800 |

| train/ | |

| approx_kl | 0.018579809 |

| clip_fraction | 0.217 |

| clip_range | 0.2 |

| entropy_loss | -8.29 |

| explained_variance | 0.0152 |

| learning_rate | 0.0003 |

| loss | 0.313 |

| n_updates | 30 |

| policy_gradient_loss | -0.00959 |

| value_loss | 19 |

Current state: Champion.Level9.ChunLiVsBalrog

| time/ | |

| fps | 816 |

| iterations | 5 |

| time_elapsed | 264 |

| total_timesteps | 216000 |

| train/ | |

| approx_kl | 0.017938577 |

| clip_fraction | 0.26 |

| clip_range | 0.2 |

| entropy_loss | -8.29 |

| explained_variance | 0.0705 |

| learning_rate | 0.0003 |

| loss | 23.4 |

| n_updates | 40 |

| policy_gradient_loss | -0.00308 |

| value_loss | 17.5 |

Current state: Champion.Level8.ChunLiVsBlanka

| time/ | |

| fps | 789 |

| iterations | 6 |

| time_elapsed | 328 |

| total_timesteps | 259200 |

| train/ | |

| approx_kl | 0.015945172 |

| clip_fraction | 0.19 |

| clip_range | 0.2 |

| entropy_loss | -8.29 |

| explained_variance | 0.213 |

| learning_rate | 0.0003 |

| loss | 0.311 |

| n_updates | 50 |

| policy_gradient_loss | -0.0084 |

| value_loss | 9.25 |

Current state: Champion.Level1.ChunLiVsGuile

| time/ | |

| fps | 773 |

| iterations | 7 |

| time_elapsed | 390 |

| total_timesteps | 302400 |

| train/ | |

| approx_kl | 0.017754147 |

| clip_fraction | 0.203 |

| clip_range | 0.2 |

| entropy_loss | -8.27 |

| explained_variance | 0.379 |

| learning_rate | 0.0003 |

| loss | 0.389 |

| n_updates | 60 |

| policy_gradient_loss | -0.0106 |

| value_loss | 8.24 |

Current state: Champion.Level5.ChunLiVsDhalsim

| time/ | |

| fps | 763 |

| iterations | 8 |

| time_elapsed | 452 |

| total_timesteps | 345600 |

| train/ | |

| approx_kl | 0.019500943 |

| clip_fraction | 0.253 |

| clip_range | 0.2 |

| entropy_loss | -8.28 |

| explained_variance | 0.248 |

| learning_rate | 0.0003 |

| loss | 0.0383 |

| n_updates | 70 |

| policy_gradient_loss | -0.00622 |

| value_loss | 7.3 |

Current state: Champion.Level2.ChunLiVsKen

| time/ | |

| fps | 133 |

| iterations | 94 |

| time_elapsed | 30322 |

| total_timesteps | 4060800 |

| train/ | |

| approx_kl | 0.021006063 |

| clip_fraction | 0.219 |

| clip_range | 0.2 |

| entropy_loss | -8.08 |

| explained_variance | 0.736 |

| learning_rate | 0.0003 |

| loss | 0.195 |

| n_updates | 930 |

| policy_gradient_loss | -0.00198 |

| value_loss | 6.34 |

Current state: Champion.Level2.ChunLiVsKen

| time/ | |

| fps | 135 |

| iterations | 95 |

| time_elapsed | 30393 |

| total_timesteps | 4104000 |

| train/ | |

| approx_kl | 0.023537166 |

| clip_fraction | 0.211 |

| clip_range | 0.2 |

| entropy_loss | -8.13 |

| explained_variance | 0.804 |

| learning_rate | 0.0003 |

| loss | 0.867 |

| n_updates | 940 |

| policy_gradient_loss | -0.00212 |

| value_loss | 8.02 |

Current state: Champion.Level3.ChunLiVsChunLi

| time/ | |

| fps | 136 |

| iterations | 96 |

| time_elapsed | 30463 |

| total_timesteps | 4147200 |

| train/ | |

| approx_kl | 0.028692458 |

| clip_fraction | 0.251 |

| clip_range | 0.2 |

| entropy_loss | -8.02 |

| explained_variance | 0.855 |

| learning_rate | 0.0003 |

| loss | 0.462 |

| n_updates | 950 |

| policy_gradient_loss | 0.00114 |

| value_loss | 7.36 |

Current state: Champion.Level1.ChunLiVsGuile

| time/ | |

| fps | 137 |

| iterations | 97 |

| time_elapsed | 30533 |

| total_timesteps | 4190400 |

| train/ | |

| approx_kl | 0.029239332 |

| clip_fraction | 0.256 |

| clip_range | 0.2 |

| entropy_loss | -7.98 |

| explained_variance | 0.851 |

| learning_rate | 0.0003 |

| loss | 0.364 |

| n_updates | 960 |

| policy_gradient_loss | 0.00631 |

| value_loss | 7.1 |

Current state: Champion.Level11.ChunLiVsSagat

| time/ | |

| fps | 138 |

| iterations | 98 |

| time_elapsed | 30603 |

| total_timesteps | 4233600 |

| train/ | |

| approx_kl | 0.029852876 |

| clip_fraction | 0.288 |

| clip_range | 0.2 |

| entropy_loss | -8.01 |

| explained_variance | 0.783 |

| learning_rate | 0.0003 |

| loss | 0.375 |

| n_updates | 970 |

| policy_gradient_loss | 0.00439 |

| value_loss | 8.48 |

Current state: Champion.Level3.ChunLiVsChunLi

| time/ | |

| fps | 139 |

| iterations | 99 |

| time_elapsed | 30672 |

| total_timesteps | 4276800 |

| train/ | |

| approx_kl | 0.022819508 |

| clip_fraction | 0.233 |

| clip_range | 0.2 |

| entropy_loss | -8.08 |

| explained_variance | 0.782 |

| learning_rate | 0.0003 |

| loss | 0.0532 |

| n_updates | 980 |

| policy_gradient_loss | 4.03e-05 |

| value_loss | 6.87 |

Current state: Champion.Level5.ChunLiVsDhalsim

| time/ | |

| fps | 140 |

| iterations | 100 |

| time_elapsed | 30740 |

| total_timesteps | 4320000 |

| train/ | |

| approx_kl | 0.028178426 |

| clip_fraction | 0.25 |

| clip_range | 0.2 |

| entropy_loss | -7.95 |

| explained_variance | 0.856 |

| learning_rate | 0.0003 |

| loss | 0.744 |

| n_updates | 990 |

| policy_gradient_loss | 0.00621 |

| value_loss | 8.54 |

Current state: Champion.Level7.ChunLiVsEHonda

| time/ | |

| fps | 141 |

| iterations | 101 |

| time_elapsed | 30808 |

| total_timesteps | 4363200 |

| train/ | |

| approx_kl | 0.022431884 |

| clip_fraction | 0.23 |

| clip_range | 0.2 |

| entropy_loss | -8.05 |

| explained_variance | 0.77 |

| learning_rate | 0.0003 |

| loss | 0.272 |

| n_updates | 1000 |

| policy_gradient_loss | 0.00136 |

| value_loss | 8.66 |

Could you give some suggestions for the training script based on this training

logs? Why did the agent not improving much from steps 345600?

Based on the provided training logs, here are a few observations and

suggestions:

High FPS at the beginning: The training starts with very high FPS (frames

per second), which indicates that the learning process might be too fast at

the beginning. However, the FPS drops significantly after a few iterations.

This suggests that the model is struggling to learn more complex patterns

in the game. You might want to consider using a lower learning rate or a

learning rate scheduler to reduce the learning rate over time.

Value loss and policy gradient loss: From the logs, it can be observed that

the value loss and policy gradient loss are not consistently decreasing,

which could be a sign that the training process is not stable. You might

want to experiment with different optimizers or tweak the

hyperparameters, such as the learning rate, entropy coefficient, or the

value function coefficient.

Explained variance: The explained variance is a measure of how well the

value function can predict the expected return. It seems to be fluctuating

and doesn't improve consistently. You might want to investigate this issue

further and check if there's any problem with the reward function or the

state representation. Additionally, you could try different architectures for

the value function network or increase the number of training iterations.

Clipped gradient fraction: The clip_fraction measures the fraction of

gradients that are clipped during the training process. A high clip_fraction

might lead to unstable training. Consider adjusting the clip range or using

gradient clipping techniques.

To improve the training, consider the following steps:

Experiment with different hyperparameters, such as learning rate, clip

range, entropy coefficient, and value function coefficient.

Use a learning rate scheduler to decrease the learning rate over time.

Try different optimizers or adjust the optimizer settings.

Investigate issues with the reward function or state representation.

Experiment with different architectures for the value function network.

Increase the number of training iterations.

Employ gradient clipping techniques to prevent exploding gradients.

Remember that training an AI agent to play a game like Street Fighter can be

challenging, and it might take multiple attempts and iterations to find the right

combination of hyperparameters, model architecture, and training techniques

that lead to satisfactory results.

The following custom environment:

import gym

import cv2

import numpy as np

import torch

from torchvision.transforms import Normalize

Custom environment wrapper

class StreetFighterCustomWrapper(gym.Wrapper):

def __init__(self, env, win_template, lose_template, testing=False, threshold=0.65):

super(StreetFighterCustomWrapper, self).__init__(env)

self.win_template = win_template

self.lose_template = lose_template

self.threshold = threshold

self.game_screen_gray = None

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

Update observation space to single-channel grayscale image

self.observation_space = gym.spaces.Box(

low=0.0, high=1.0, shape=(84, 84, 1), dtype=np.float32

)

self.testing = testing

Normalize the image for MobileNetV3Small.

self.normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224,

0.225])

def _preprocess_observation(self, observation):

self.game_screen_gray = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(self.game_screen_gray, (84, 84),

interpolation=cv2.INTER_AREA) / 255.0

return np.expand_dims(resized_image, axis=-1)

Using MobileNetV3Small.

self.game_screen_gray = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(self.game_screen_gray, (224, 224),

interpolation=cv2.INTER_AREA).astype(np.float32) / 255.0

Convert the NumPy array to a PyTorch tensor

resized_image = torch.from_numpy(resized_image)

Apply normalization

resized_image = self.normalize(resized_image)

Add a batch dimension to match the model input shape

resized_image = resized_image.unsqueeze(0)

return resized_image

def _get_win_or_lose_bonus(self):

if self.prev_player_health > self.prev_opponent_health:

print('You win!')

return 200

else:

print('You lose!')

return -200

def _get_reward(self):

player_health_area = self.game_screen_gray[15:20, 32:120]

oppoent_health_area = self.game_screen_gray[15:20, 136:224]

Get health points using the number of pixels above 129.

player_health = np.sum(player_health_area > 129) / player_health_area.size

opponent_health = np.sum(oppoent_health_area > 129) /

oppoent_health_area.size

player_health_diff = self.prev_player_health - player_health

opponent_health_diff = self.prev_opponent_health - opponent_health

reward = (opponent_health_diff - player_health_diff) * 100 # max would be 100

self.prev_player_health = player_health

self.prev_opponent_health = opponent_health

Print the health values of the player and the opponent

print("Player health: %f Opponent health:%f" % (player_health,

opponent_health))

return reward

def reset(self):

observation = self.env.reset()

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

return self._preprocess_observation(observation)

def step(self, action):

observation, _, _, info = self.env.step(action)

observation, _reward, _done, info = self.env.step(action)

custom_reward = self._get_reward()

custom_done = False

if self.prev_player_health <= 0.00001 or self.prev_opponent_health <= 0.00001:

custom_reward += self._get_win_or_lose_bonus()

if not self.testing:

custom_done = True

else:

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

return self._preprocess_observation(observation), custom_reward,

custom_done, info

It reported the errors:

ValueError: Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = torch.Size([224, 224]).

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File

"C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\multiprocessing\process.py",

line 108, in run

self._target(*self._args, **self._kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\transforms.py", line 221, in forward

return F.normalize(tensor, self.mean, self.std, self.inplace)

File "C:\Users\unitec\Documents\AIProjects\street-fighter-ai\custom_sf2_cv_env.py",

line 42, in _preprocess_observation

resized_image = self.normalize(resized_image)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\vec_env\subproc_vec_env.py", line 38, in

_worker

observation = env.reset()

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\transforms.py", line 221, in forward

return F.normalize(tensor, self.mean, self.std, self.inplace)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\vec_env\subproc_vec_env.py", line 38, in

_worker

observation = env.reset()

File "C:\Users\unitec\Documents\AIProjects\street-fighter-ai\custom_sf2_cv_env.py",

line 80, in reset

return self._preprocess_observation(observation)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\functional.py", line 320, in normalize

raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = '

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\Users\unitec\Documents\AIProjects\street-fighter-ai\custom_sf2_cv_env.py",

line 80, in reset

return self._preprocess_observation(observation)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\functional.py", line 320, in normalize

raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = '

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\transforms.py", line 221, in forward

return F.normalize(tensor, self.mean, self.std, self.inplace)

File "C:\Users\unitec\Documents\AIProjects\street-fighter-ai\custom_sf2_cv_env.py",

line 42, in _preprocess_observation

resized_image = self.normalize(resized_image)

ValueError: Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = torch.Size([224, 224]).

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\transforms.py", line 221, in forward

return F.normalize(tensor, self.mean, self.std, self.inplace)

File "C:\Users\unitec\Documents\AIProjects\street-fighter-ai\custom_sf2_cv_env.py",

line 42, in _preprocess_observation

resized_image = self.normalize(resized_image)

ValueError: Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = torch.Size([224, 224]).

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\functional.py", line 320, in normalize

raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = '

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\functional.py", line 320, in normalize

raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = '

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\transforms.py", line 221, in forward

return F.normalize(tensor, self.mean, self.std, self.inplace)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\functional.py", line 320, in normalize

raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = '

ValueError: Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = torch.Size([224, 224]).

ValueError: Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = torch.Size([224, 224]).

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\transforms.py", line 221, in forward

return F.normalize(tensor, self.mean, self.std, self.inplace)

ValueError: Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = torch.Size([224, 224]).

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\functional.py", line 320, in normalize

raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = '

ValueError: Expected tensor to be a tensor image of size (..., C, H, W). Got

tensor.size() = torch.Size([224, 224]).

Traceback (most recent call last):

File

"C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\multiprocessing\connection.py",

line 312, in _recv_bytes

nread, err = ov.GetOverlappedResult(True)

BrokenPipeError: [WinError 109] The pipe has been ended

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

File ".\train_cv_sf2_ai.py", line 115, in <module>

main()

File ".\train_cv_sf2_ai.py", line 106, in main

model.learn(

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\ppo\ppo.py", line 299, in learn

return super(PPO, self).learn(

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\on_policy_algorithm.py", line 226, in learn

total_timesteps, callback = self._setup_learn(

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\base_class.py", line 420, in _setup_learn

self._last_obs = self.env.reset() # pytype: disable=annotation-type-mismatch

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\vec_env\subproc_vec_env.py", line 133, in

reset

obs = [remote.recv() for remote in self.remotes]

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\vec_env\subproc_vec_env.py", line 133, in

<listcomp>

obs = [remote.recv() for remote in self.remotes]

File

"C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\multiprocessing\connection.py",

line 250, in recv

buf = self._recv_bytes()

File

"C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\multiprocessing\connection.py",

line 321, in _recv_bytes

raise EOFError

EOFError

It seems that the main issue in the code is related to the normalization of the

image. The error message indicates that the expected tensor shape is (..., C,

H, W), but the given tensor has the shape torch.Size([224, 224]). This means

that the channel dimension is missing.

To fix the error, you can convert the grayscale image to a 3-channel image

before resizing and normalization. You can do this by stacking the grayscale

image three times along the channel axis. Modify the

function as follows: _preprocess_observation

python Copy code

def _preprocess_observation (self, observation):

Using MobileNetV3Small.

self.game_screen_gray = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(self.game_screen_gray, (224 , 224),

Convert the grayscale image to a 3-channel image

resized_image = np.stack([resized_image, resized_image, resized_image],

Convert the NumPy array to a PyTorch tensor

resized_image = torch.from_numpy(resized_image)

Apply normalization

resized_image = self.normalize(resized_image)

Add a batch dimension to match the model input shape

resized_image = resized_image.unsqueeze(0)

return resized_image

This should fix the issue related to the tensor dimensions. If you still

encounter any issues, please let me know, and I will help you further.

Traceback (most recent call last):

File

"C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\multiprocessing\process.py",

line 315, in _bootstrap

self.run()

File

"C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\multiprocessing\process.py",

line 108, in run

self._target(*self._args, **self._kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\vec_env\subproc_vec_env.py", line 38, in

_worker

observation = env.reset()

Traceback (most recent call last):

File "C:\Users\unitec\Documents\AIProjects\street-fighter-

ai\custom_sf2_cv_env.py", line 80, in reset

return self._preprocess_observation(observation)

File

"C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\multiprocessing\process.py",

line 315, in _bootstrap

self.run()

File "C:\Users\unitec\Documents\AIProjects\street-fighter-

ai\custom_sf2_cv_env.py", line 42, in _preprocess_observation

resized_image = self.normalize(resized_image)

File

"C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\multiprocessing\process.py",

line 108, in run

self._target(*self._args, **self._kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\stable_baselines3\common\vec_env\subproc_vec_env.py", line 38, in

_worker

observation = env.reset()

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\transforms.py", line 221, in forward

return F.normalize(tensor, self.mean, self.std, self.inplace)

File "C:\Users\unitec\Documents\AIProjects\street-fighter-

ai\custom_sf2_cv_env.py", line 80, in reset

return self._preprocess_observation(observation)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\functional.py", line 335, in normalize

tensor.sub_(mean).div_(std)

File "C:\Users\unitec\Documents\AIProjects\street-fighter-

ai\custom_sf2_cv_env.py", line 42, in _preprocess_observation

resized_image = self.normalize(resized_image)

RuntimeError: The size of tensor a (224) must match the size of tensor b (3) at

non-singleton dimension 0

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torch\nn\modules\module.py", line 1051, in _call_impl

return forward_call(*input, **kwargs)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\transforms.py", line 221, in forward

return F.normalize(tensor, self.mean, self.std, self.inplace)

File "C:\ProgramData\Anaconda3\envs\StreetFighterAI\lib\site-

packages\torchvision\transforms\functional.py", line 335, in normalize

tensor.sub_(mean).div_(std)

RuntimeError: The size of tensor a (224) must match the size of tensor b (3) at

non-singleton dimension 0

I changed the "_preprocess_observation()" to use rgb images directly, but it still

have errors.

def _preprocess_observation(self, observation):

self.game_screen_gray = cv2.cvtColor(observation,

cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(self.game_screen_gray, (84, 84),

interpolation=cv2.INTER_AREA) / 255.0

return np.expand_dims(resized_image, axis=-1)

Using MobileNetV3Small.

self.game_screen_gray = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(observation, (224, 224),

interpolation=cv2.INTER_AREA).astype(np.float32) / 255.0

Convert the NumPy array to a PyTorch tensor

resized_image = torch.from_numpy(resized_image)

Apply normalization

resized_image = self.normalize(resized_image)

Add a batch dimension to match the model input shape

resized_image = resized_image.unsqueeze(0)

return resized_image

The error you encountered is because the normalization operation expects a

3-channel input (RGB), but you are passing a single channel (grayscale)

image. You should convert the grayscale image back to 3 channels before

resizing and normalization.

Modify the function as follows: _preprocess_observation()

python Copy code

def _preprocess_observation (self, observation):

Convert the grayscale image back to 3 channels

self.game_screen_gray = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)

game_screen_color = cv2.cvtColor(self.game_screen_gray, cv2.COLOR_GRAY2BGR)

Resize the image

resized_image = cv2.resize(game_screen_color, (224 , 224), interpolation=cv2.INTER_AREA).astype(np.float32)

Convert the NumPy array to a PyTorch tensor

resized_image = torch.from_numpy(resized_image).permute(2 , 0 ,

Apply normalization

resized_image = self.normalize(resized_image)

Add a batch dimension to match the model input shape

resized_image = resized_image.unsqueeze(0)

return resized_image

This modification first converts the grayscale image back to a 3-channel

image using . Also, note the addition of cv2.COLOR_GRAY2BGR .permute(2,

after converting the NumPy array to a PyTorch tensor. This permutes 0, 1)

the dimensions of the tensor to have the channels first, which is the expected

input format for the normalization.

Would the PPO training policy still be suitable for the MobileNetV3 feature

extractor? If not, please suggest a more suitable policy and provide the code.

Yes, the PPO training policy can still be suitable for the MobileNetV3 feature

extractor. PPO is a policy optimization algorithm that works independently of

the feature extraction architecture. As long as you provide appropriate input

to the policy network, PPO can be used for training.

However, you need to modify your custom environment to handle the change

in the input format. You will also need to update the input shape of the neural

network used in the PPO policy to match the output shape of the

MobileNetV3 feature extractor.

Here's a suggested way to update your PPO policy:

First, let's create a custom policy that uses the MobileNetV3 feature

extractor. You can do this by subclassing the class from BasePolicy

Stable Baselines 3 and implementing a custom _build_mlp_extractor

method:

python Copy code

import torch as th

import torch.nn as nn

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

from stable_baselines3.common.policies import ActorCriticPolicy

class MobileNetV3Extractor (BaseFeaturesExtractor):

def __init__ (self, observation_space: gym.spaces.Box):

super (MobileNetV3Extractor, self).__init__(observation_space,

self.mobilenet = torchvision.models.mobilenet_v3_small(pretrained=

self.mobilenet = nn.Sequential(* list (self.mobilenet.children())[:-

def forward (self, observations: th.Tensor) -> th.Tensor:

return self.mobilenet(observations)

class CustomPolicy (ActorCriticPolicy):

def __init__ (self, *args, **kwargs):

super (CustomPolicy, self).__init__(*args, **kwargs)

def _build_mlp_extractor (self) -> None :

self.mlp_extractor = MobileNetV3Extractor(self.observation_space)

Next, update your custom environment's observation space to match the

new input shape:

python Copy code

Replace this line in your custom environment

self.observation_space = spaces.Box(low= 0 , high= 255 , shape=(84 , 84

With this line

self.observation_space = spaces.Box(low= 0 , high= 1 , shape=(3 , 224 ,

Finally, train the PPO agent with the custom policy:

python Copy code

from stable_baselines3 import PPO

env = CustomSF2CVEnv() # Assuming this is your custom environment

model = PPO(CustomPolicy, env, verbose= 1)

model.learn(total_timesteps= 100000)

This should now work with the MobileNetV3 feature extractor. The code

assumes you have already imported the necessary modules (e.g., , gym

, , etc.). torchvision numpy

Compared with the following "mobilenet_extractor.py", what's the difference

in the feature extraction process? Which is better in Street Fighter II deep

reinforcement learning? Why?

import gym

import torch

import torch.nn as nn

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

from torchvision.models import mobilenet_v3_small

Custom MobileNetV3 Feature Extractor

class MobileNetV3Extractor(BaseFeaturesExtractor):

def __init__(self, observation_space: gym.Space):

super(MobileNetV3Extractor, self).__init__(observation_space,

features_dim=256)

self.mobilenet = mobilenet_v3_small(pretrained=True)

self.adaptive_pool = nn.AdaptiveAvgPool2d((1, 1))

self.fc = nn.Linear(576, self.features_dim)

def forward(self, observations: torch.Tensor) -> torch.Tensor:

x = observations.permute(0, 2, 3, 1) # Swap the channel dimension

x = self.mobilenet.features(observations)

x = self.adaptive_pool(x)

x = torch.flatten(x, 1)

x = self.fc(x)

return x

3 / 3

The primary difference between the custom MobileNetV3Extractor

provided in your code snippet and the one I provided earlier lies in the output

feature dimension and the layers used in the extractor:

In the custom you provided, the output feature MobileNetV3Extractor

dimension is set to 256, while the one I provided uses the original

MobileNetV3-small output feature dimension of 1280.

Your custom applies an additional Adaptive MobileNetV3Extractor

Average Pooling layer and a fully connected (Linear) layer after the

MobileNetV3-small features. This is done to reduce the number of output

features to 256.

As for which one is better for Street Fighter II deep reinforcement learning, it's

hard to say without empirical evidence. Both extractors have their merits:

The one I provided keeps the original feature dimension (1280) of the

MobileNetV3-small, which may retain more information from the input

observations. This could potentially lead to better performance.

The custom you provided reduces the feature MobileNetV3Extractor

dimension to 256. This can lead to a smaller model, faster training, and

potentially better generalization due to reduced complexity. However, it

may lose some information due to the dimensionality reduction.

The best approach would be to test both feature extractors and compare

their performance empirically. You can try training your reinforcement

learning model with both extractors and compare the learning curves, final

performance, and generalization to determine which one works better for

your specific use case.

Can I make the input images to mobilenet smaller than 224 * 224 to make the

compuation speed faster?

Yes, you can use smaller input images with MobileNetV3 to reduce the

computational cost and potentially speed up training. However, keep in mind

that using smaller input images may also result in reduced feature quality,

which could impact the overall performance of the model.

To use smaller input images with MobileNetV3, you should change the image

resizing step in your function. For example, to _preprocess_observation()

resize the input images to 112x112, you can modify the cv2.resize()

function call:

python Copy code

resized_image = cv2.resize(observation, (112 , 112), interpolation=cv2.INTER_AREA).astype(np.float32)

Also, note that the input image size should still be compatible with the

architecture. MobileNetV3 can handle a variety of input sizes; however, very

small input sizes may result in issues when processing through the network

due to the nature of convolution and pooling operations. It's recommended to

test the chosen input size to ensure it works correctly with the architecture.

What are compatible sizes for mobilenetv3

MobileNetV3, being a convolutional neural network, is relatively flexible with

input sizes. However, there are some constraints due to the architecture's

convolutional and pooling layers. A rule of thumb for compatible input sizes is

to choose dimensions that are divisible by a certain power of 2, depending on

the network's depth.

For MobileNetV3, the input dimensions should be divisible by 32. This is

because the architecture has a series of downsampling operations that

reduce the spatial dimensions by a factor of 2 at each step. After five such

operations, the input dimensions will be reduced by a factor of 32.

So, to choose a compatible input size for MobileNetV3, you can select

dimensions that are divisible by 32, such as 96x96, 128x128, 160x160,

192x192, and so on. Note that the default input size is 224x224, which is not

divisible by 32, but it still works due to the architecture's adaptive average

pooling layer that can handle slightly different input sizes.

Keep in mind that changing the input size will affect the performance and

computational cost of the model. Smaller input sizes will generally result in

faster processing but may degrade the model's feature extraction

capabilities, while larger input sizes may improve feature extraction at the

cost of increased computation time.

Could you modify the mobilenetv3 script to make it compatible with one

channel grayscale image?

To modify the MobileNetV3 script to make it compatible with one-channel

grayscale images, you need to modify the first convolutional layer of the

model to accept one input channel instead of three. Here's an updated

class that works with grayscale images: MobileNetV3Extractor

python Copy code

import gym

import torch

import torch.nn as nn

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

from torchvision.models import mobilenet_v3_small

Custom MobileNetV3 Feature Extractor for Grayscale Images

class MobileNetV3Extractor (BaseFeaturesExtractor):

def __init__ (self, observation_space: gym.Space):

super (MobileNetV3Extractor, self).__init__(observation_space,

self.mobilenet = mobilenet_v3_small(pretrained= True)

Modify the first convolutional layer to accept one input

first_conv_layer = self.mobilenet.features[0][0]

new_first_conv_layer = nn.Conv2d(1 , first_conv_layer.out_channels,

kernel_size=first_conv_layer.kernel_size,

stride=first_conv_layer.stride,

padding=first_conv_layer.padding,

dilation=first_conv_layer.dilation,

groups=first_conv_layer.groups,

bias= False)

Copy the pre-trained weights for the first layer (average

new_first_conv_layer.weight.data = first_conv_layer.weight.data.mean(dim=

Replace the first layer with the new one

self.mobilenet.features[0][0] = new_first_conv_layer

self.adaptive_pool = nn.AdaptiveAvgPool2d((1 , 1))

self.fc = nn.Linear(576 , self.features_dim)

def forward (self, observations: torch.Tensor) -> torch.Tensor:

x = self.mobilenet.features(observations)

x = self.adaptive_pool(x)

x = torch.flatten(x, 1)

x = self.fc(x)

return x

This updated class will now work with one-channel grayscale images. Note

that the weights for the first layer are averaged across channels to initialize

the single-channel layer with pre-trained weights. However, you might lose

some color-specific information during this process, and the model's

performance might be slightly affected.

import gym

import torch

import torchvision

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

Custom MobileNetV3 Feature Extractor

class MobileNetV3Extractor(BaseFeaturesExtractor):

def __init__(self, observation_space: gym.Space):

super(MobileNetV3Extractor, self).__init__(observation_space, 1280)

self.mobilenet =

torchvision.models.mobilenet_v3_small(pretrained=True)

self.mobilenet = torch.nn.Sequential(*list(self.mobilenet.children())[:-1])

def forward(self, observations: torch.Tensor) -> torch.Tensor:

return self.mobilenet(observations)

Is the variable name of the value "1280" "features_dim"?

2 / 2

Yes, in the class you provided, the value is MobileNetV3Extractor 1280

the . This value represents the size of the output feature features_dim

vector after passing the input observations through the MobileNetV3 feature

extractor. It corresponds to the number of output channels from the last

convolutional layer of the MobileNetV3 model.

What's the size of the ouput of

"torch.nn.Sequential(*list(self.mobilenet.children())[:-1])"?

The size of the output of

will be torch.nn.Sequential(*list(self.mobilenet.children())[:-1])

a 4D tensor with dimensions (batch_size, num_channels, height,

. width)

: The number of input samples (images) in the batch. batch_size

: The number of output channels from the last convolutional num_channels

layer of the MobileNetV3 model. For , this value is 576. mobilenet_v3_small

and : These dimensions depend on the spatial resolution of height width

the input images and the specific architecture of the MobileNetV3 model. If

you provide input images with a size of 224x224, the height and width of the

output tensor would be 7x7 for . mobilenet_v3_small

So, the output tensor size for with input images of mobilenet_v3_small

size 224x224 would be . (batch_size, 576, 7, 7)

Then how is "1280" related to this output size?

I apologize for the confusion in my previous responses. You are correct in

pointing out the discrepancy. In the custom class, MobileNetV3Extractor

the value of 1280 is incorrect for the features_dim mobilenet_v3_small

model.

The should be the size of the feature vector after processing features_dim

the output from the MobileNetV3 model. In this case, you will need to apply

additional operations after the modified MobileNetV3 model to get the feature

vector.

Here's the corrected version of the class: MobileNetV3Extractor

python Copy code

import gym

import torch

import torchvision

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

class MobileNetV3Extractor (BaseFeaturesExtractor):

def __init__ (self, observation_space: gym.Space):

super (MobileNetV3Extractor, self).__init__(observation_space,

self.mobilenet = torchvision.models.mobilenet_v3_small(pretrained=

self.mobilenet = torch.nn.Sequential(* list (self.mobilenet.children())[:-

self.adaptive_pool = torch.nn.AdaptiveAvgPool2d((1 , 1))

def forward (self, observations: torch.Tensor) -> torch.Tensor:

x = self.mobilenet(observations)

x = self.adaptive_pool(x)

x = torch.flatten(x, 1)

return x

In this version, I have set the to 576, which matches the features_dim

number of output channels from the last convolutional layer of the

model. I have also added an mobilenet_v3_small AdaptiveAvgPool2d

layer to reduce the spatial dimensions to 1x1, and then flattened the output

tensor to produce a feature vector of size 576 for each input sample.

import gym

import cv2

import numpy as np

import torch

from torchvision.transforms import Normalize

Custom environment wrapper

class StreetFighterCustomWrapper(gym.Wrapper):

def __init__(self, env, win_template, lose_template, testing=False,

threshold=0.65):

super(StreetFighterCustomWrapper, self).__init__(env)

self.win_template = win_template

self.lose_template = lose_template

self.threshold = threshold

self.game_screen_gray = None

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

Update observation space to single-channel grayscale image

self.observation_space = gym.spaces.Box(

low=0.0, high=1.0, shape=(3, 96, 96), dtype=np.float32

)

self.testing = testing

Normalize the image for MobileNetV3Small.

self.normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229,

0.224, 0.225])

def _preprocess_observation(self, observation):

self.game_screen_gray = cv2.cvtColor(observation,

cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(self.game_screen_gray, (84, 84),

interpolation=cv2.INTER_AREA) / 255.0

return np.expand_dims(resized_image, axis=-1)

Using MobileNetV3Small.

self.game_screen_gray = cv2.cvtColor(observation,

cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(observation, (96, 96),

interpolation=cv2.INTER_AREA).astype(np.float32) / 255.0

Convert the NumPy array to a PyTorch tensor

resized_image = torch.from_numpy(resized_image).permute(2, 0, 1)

Apply normalization

resized_image = self.normalize(resized_image)

Add a batch dimension to match the model input shape

resized_image = resized_image.unsqueeze(0)

return resized_image

def _get_win_or_lose_bonus(self):

if self.prev_player_health > self.prev_opponent_health:

print('You win!')

return 200

else:

print('You lose!')

return -200

def _get_reward(self):

player_health_area = self.game_screen_gray[15:20, 32:120]

oppoent_health_area = self.game_screen_gray[15:20, 136:224]

Get health points using the number of pixels above 129.

player_health = np.sum(player_health_area > 129) /

player_health_area.size

opponent_health = np.sum(oppoent_health_area > 129) /

oppoent_health_area.size

player_health_diff = self.prev_player_health - player_health

opponent_health_diff = self.prev_opponent_health - opponent_health

reward = (opponent_health_diff - player_health_diff) * 100 # max would

be 100

self.prev_player_health = player_health

self.prev_opponent_health = opponent_health

Print the health values of the player and the opponent

print("Player health: %f Opponent health:%f" % (player_health,

opponent_health))

return reward

def reset(self):

observation = self.env.reset()

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

return self._preprocess_observation(observation)

def step(self, action):

observation, _, _, info = self.env.step(action)

observation, _reward, _done, info = self.env.step(action)

custom_reward = self._get_reward()

custom_done = False

if self.prev_player_health <= 0.00001 or self.prev_opponent_health <=

0.00001:

custom_reward += self._get_win_or_lose_bonus()

if not self.testing:

custom_done = True

else:

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

return self._preprocess_observation(observation), custom_reward,

custom_done, info

Could you provide a better reward function for training the ai agent to master

Street Fighter II?

To improve the reward function for training the AI agent, you can incorporate

additional game-related aspects to make the agent learn more sophisticated

strategies. Here's a proposed reward function:

Encourage aggressive play by rewarding the agent for attacking the

opponent and penalizing it for taking damage.

Encourage staying close to the opponent to create more opportunities for

interaction.

Encourage the agent to finish the round quickly, as the game rewards

faster victories with more points.

Here's an updated reward function for your StreetFighterCustomWrapper

class:

python Copy code

def _get_reward (self):

player_health_area = self.game_screen_gray[15 : 20 , 32 : 120]

oppoent_health_area = self.game_screen_gray[15 : 20 , 136 : 224]

Get health points using the number of pixels above 129.

player_health = np. sum (player_health_area > 129) / player_health_area.size

opponent_health = np. sum (oppoent_health_area > 129) / oppoent_health_area.size

player_health_diff = self.prev_player_health - player_health

opponent_health_diff = self.prev_opponent_health - opponent_health

Reward for attacking the opponent and taking damage

reward = (opponent_health_diff - player_health_diff) * 100

Encourage staying close to the opponent

player_pos, opponent_pos = self._get_player_positions()

if player_pos is not None and opponent_pos is not None :

distance = np. abs (player_pos - opponent_pos)

proximity_reward = -distance * 0.1

reward += proximity_reward

Encourage finishing the round quickly

time_left = self._get_time_left()

if time_left is not None :

time_reward = (99 - time_left) * 0.1

reward += time_reward

self.prev_player_health = player_health

self.prev_opponent_health = opponent_health

return reward

You would need to implement the and _get_player_positions()

functions that extract player positions and time left from _get_time_left()

the game screen.

These changes should make the agent more aggressive and learn to stay

closer to the opponent while also finishing rounds quickly. Remember that

you may need to adjust the reward weightings and add any other game-

specific strategies to find the right balance for effective learning.

I cannot get the distance between player and opponent as I'm trying to train

an ai agent that base its judges on raw pixels instead of ram values. Is there

any suggestion on how to design the reward function in this situation? Please

provide the code.

In this case, you can use the difference in the health of the player and

opponent as the primary reward signal. You can also encourage the agent to

make more moves by adding a small penalty for each step it takes without

causing any change in health. Here's an updated reward function:

python Copy code

def _get_reward (self):

player_health_area = self.game_screen_gray[15 : 20 , 32 : 120]

opponent_health_area = self.game_screen_gray[15 : 20 , 136 : 224]

Get health points using the number of pixels above 129.

player_health = np. sum (player_health_area > 129) / player_health_area.size

opponent_health = np. sum (oppoent_health_area > 129) / oppoent_health_area.size

player_health_diff = self.prev_player_health - player_health

opponent_health_diff = self.prev_opponent_health - opponent_health

Reward for attacking the opponent and taking damage

reward = (opponent_health_diff - player_health_diff) * 100

Penalty for each step without any change in health

if player_health_diff == 0 and opponent_health_diff == 0 :

reward -= 1

self.prev_player_health = player_health

self.prev_opponent_health = opponent_health

return reward

This reward function should encourage the agent to make more moves and

learn strategies that maximize the difference in health between itself and its

opponent. You may need to experiment with different weightings and rewards

to find the optimal balance for training the agent.

import gym

import cv2

import numpy as np

import torch

from torchvision.transforms import Normalize

Custom environment wrapper

class StreetFighterCustomWrapper(gym.Wrapper):

def __init__(self, env, win_template, lose_template, testing=False,

threshold=0.65):

super(StreetFighterCustomWrapper, self).__init__(env)

self.win_template = win_template

self.lose_template = lose_template

self.threshold = threshold

self.game_screen_gray = None

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

Update observation space to single-channel grayscale image

self.observation_space = gym.spaces.Box(

low=0.0, high=1.0, shape=(84, 84, 1), dtype=np.float32

)

observation_space for mobilenet

self.observation_space = gym.spaces.Box(

low=0.0, high=1.0, shape=(3, 96, 96), dtype=np.float32

)

self.testing = testing

Normalize the image for MobileNetV3Small.

self.normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229,

0.224, 0.225])

def _preprocess_observation(self, observation):

self.game_screen_gray = cv2.cvtColor(observation,

cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(self.game_screen_gray, (84, 84),

interpolation=cv2.INTER_AREA) / 255.0

return np.expand_dims(resized_image, axis=-1)

Using MobileNetV3Small.

self.game_screen_gray = cv2.cvtColor(observation,

cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(observation, (96, 96),

interpolation=cv2.INTER_AREA).astype(np.float32) / 255.0

Convert the NumPy array to a PyTorch tensor

resized_image = torch.from_numpy(resized_image).permute(2, 0, 1)

Apply normalization

resized_image = self.normalize(resized_image)

Add a batch dimension to match the model input shape

resized_image = resized_image.unsqueeze(0)

return resized_image

def _get_win_or_lose_bonus(self):

if self.prev_player_health > self.prev_opponent_health:

print('You win!')

return 200

else:

print('You lose!')

return -200

def _get_reward(self):

player_health_area = self.game_screen_gray[15:20, 32:120]

oppoent_health_area = self.game_screen_gray[15:20, 136:224]

Get health points using the number of pixels above 129.

player_health = np.sum(player_health_area > 129) /

player_health_area.size

opponent_health = np.sum(oppoent_health_area > 129) /

oppoent_health_area.size

player_health_diff = self.prev_player_health - player_health

opponent_health_diff = self.prev_opponent_health - opponent_health

reward = (opponent_health_diff - player_health_diff) * 100 # max would

be 100

Penalty for each step without any change in health

if player_health_diff == 0 and opponent_health_diff == 0:

reward -= 1

self.prev_player_health = player_health

self.prev_opponent_health = opponent_health

Print the health values of the player and the opponent

print("Player health: %f Opponent health:%f" % (player_health,

opponent_health))

return reward

def reset(self):

observation = self.env.reset()

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

return self._preprocess_observation(observation)

def step(self, action):

observation, _, _, info = self.env.step(action)

observation, _reward, _done, info = self.env.step(action)

custom_reward = self._get_reward()

custom_reward -= 5.0 / 60.0 # penalty for each step (-5 points per

second)

custom_done = False

if self.prev_player_health <= 0.00001 or self.prev_opponent_health <=

0.00001:

custom_reward += self._get_win_or_lose_bonus()

if not self.testing:

custom_done = True

else:

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

return self._preprocess_observation(observation), custom_reward,

custom_done, info

Please examine my "CustomWrapper" and help me design the weights for

different rewards. I think the penalty for no change in health is too large

because it would minus one point in each frame. The maximum of the

attacking and taking damage reward is just 100 in one round (take no hit while

defeat the enemy), but the no change penalty could be 600 if there is no

interaction in 10 seconds. You need to take into consideration the step

penalty "custom_reward -= 5.0 / 60.0" as well. Please help me decide their

reasonable weights.

You're right that the current penalty for no change in health might be too

large. We can adjust the weights for different rewards and penalties to

balance the learning process. Here's a suggestion for the reward function:

Decrease the penalty for each step without any change in health.

Decrease the step penalty.

Increase the win/lose bonus.

python Copy code

def _get_reward (self):

...

Reward for attacking the opponent and taking damage

reward = (opponent_health_diff - player_health_diff) * 100

Penalty for each step without any change in health

if player_health_diff == 0 and opponent_health_diff == 0 :

reward -= 0.2

...

return reward

def step (self, action):

...

custom_reward = self._get_reward()

custom_reward -= 1.0 / 60.0 # penalty for each step (-1 point

...

return self._preprocess_observation(observation), custom_reward,

def _get_win_or_lose_bonus (self):

if self.prev_player_health > self.prev_opponent_health:

return 300

else :

return - 300

These changes should make the agent more aggressive in attacking the

opponent while still considering the consequences of its actions. The agent

should also be more motivated to win the round. You may need to experiment

with different weightings and rewards to find the optimal balance for training

the agent.

import gym

import cv2

import numpy as np

import torch

from torchvision.transforms import Normalize

Custom environment wrapper

class StreetFighterCustomWrapper(gym.Wrapper):

def __init__(self, env, win_template, lose_template, testing=False,

threshold=0.65):

super(StreetFighterCustomWrapper, self).__init__(env)

self.win_template = win_template

self.lose_template = lose_template

self.threshold = threshold

self.game_screen_gray = None

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

Update observation space to single-channel grayscale image

self.observation_space = gym.spaces.Box(

low=0.0, high=1.0, shape=(84, 84, 1), dtype=np.float32

)

observation_space for mobilenet

self.observation_space = gym.spaces.Box(

low=0.0, high=1.0, shape=(3, 96, 96), dtype=np.float32

)

self.testing = testing

Normalize the image for MobileNetV3Small.

self.normalize = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229,

0.224, 0.225])

def _preprocess_observation(self, observation):

self.game_screen_gray = cv2.cvtColor(observation,

cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(self.game_screen_gray, (84, 84),

interpolation=cv2.INTER_AREA) / 255.0

return np.expand_dims(resized_image, axis=-1)

Using MobileNetV3Small.

self.game_screen_gray = cv2.cvtColor(observation,

cv2.COLOR_BGR2GRAY)

resized_image = cv2.resize(observation, (96, 96),

interpolation=cv2.INTER_AREA).astype(np.float32) / 255.0

Convert the NumPy array to a PyTorch tensor

resized_image = torch.from_numpy(resized_image).permute(2, 0, 1)

Apply normalization

resized_image = self.normalize(resized_image)

Add a batch dimension to match the model input shape

resized_image = resized_image.unsqueeze(0)

return resized_image

def _get_win_or_lose_bonus(self):

if self.prev_player_health > self.prev_opponent_health:

print('You win!')

return 300

else:

print('You lose!')

return -300

def _get_reward(self):

player_health_area = self.game_screen_gray[15:20, 32:120]

oppoent_health_area = self.game_screen_gray[15:20, 136:224]

Get health points using the number of pixels above 129.

player_health = np.sum(player_health_area > 129) /

player_health_area.size

opponent_health = np.sum(oppoent_health_area > 129) /

oppoent_health_area.size

player_health_diff = self.prev_player_health - player_health

opponent_health_diff = self.prev_opponent_health - opponent_health

reward = (opponent_health_diff - player_health_diff) * 100 # max would

be 100

Penalty for each step without any change in health

if player_health_diff == 0 and opponent_health_diff == 0:

reward -= 12.0 / 60.0 # -12 points per idle second

self.prev_player_health = player_health

self.prev_opponent_health = opponent_health

Print the health values of the player and the opponent

print("Player health: %f Opponent health:%f" % (player_health,

opponent_health))

return reward

def reset(self):

observation = self.env.reset()

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

return self._preprocess_observation(observation)

def step(self, action):

observation, _, _, info = self.env.step(action)

observation, _reward, _done, info = self.env.step(action)

custom_reward = self._get_reward()

custom_reward -= 1.0 / 60.0 # penalty for each step (-5 points per

second)

custom_done = False

if self.prev_player_health <= 0.00001 or self.prev_opponent_health <=

0.00001:

custom_reward += self._get_win_or_lose_bonus()

if not self.testing:

custom_done = True

else:

self.prev_player_health = 1.0

self.prev_opponent_health = 1.0

return self._preprocess_observation(observation), custom_reward,

custom_done, info

Would this weigth distribution be more proper?

Yes, this weight distribution should be more balanced and provide better

training incentives for the AI agent. Here's a summary of the changes:

The penalty for each step without any change in health is now -12 points

per idle second. This reduces the penalty compared to the original

implementation (-60 points per idle second).

The step penalty is now -1 point per second, which is less severe than the

original implementation (-5 points per second).

The win/lose bonus remains at 300/-300.

These changes should encourage the agent to be more aggressive in

attacking the opponent while still taking into account the consequences of its

actions. It will also motivate the agent to win the round.

However, it's essential to understand that finding the perfect balance for

rewards and penalties may require further experimentation and tuning. You

may need to adjust these values during the training process to achieve the

desired performance.

In a previous training setup, I used the following rewards:

1. (opponent_health_diff - player_health_diff) * 100

2. custom_reward -= 5.0 / 60.0 # penalty for each step (-5 points per second)

3. +/-300 points for win/lose

However, it seems that the resulted agent doesn't learn much startegies.

Qualitatively, the agent keeps jumping, not engaging with the opponent

much, and cannot win the game. What might be the problems? Would the

new settings potentially fix it?

The issues you mentioned might be due to the following reasons:

High step penalty: The step penalty of -5 points per second may be too

severe, causing the agent to prioritize finishing the round quickly rather

than learning effective strategies. This could lead to the agent jumping and

avoiding the opponent rather than actively engaging.

Insufficient distinction between rewards: The agent may not have a strong

enough incentive to deal damage to the opponent if the rewards for

attacking and taking damage are not adequately differentiated. In this

case, the agent might prioritize self-preservation over winning the round.

The new settings you proposed earlier could potentially help address these

issues:

The step penalty is reduced to -1 point per second, which should allow the

agent to explore different strategies without being overly penalized for

taking time.

The penalty for each step without any change in health is reduced to -12

points per idle second. This should encourage the agent to actively

engage with the opponent while still being cautious about the

consequences of its actions.

However, it's essential to note that these changes alone may not guarantee

success. You may need to experiment with different reward values and

training parameters (e.g., learning rate, network architecture) to find the

optimal balance for your AI agent.

Additionally, improving the agent's performance could also involve increasing

the training time, using a more complex neural network architecture, or

employing techniques like curriculum learning (gradually increasing the

difficulty of the tasks) to help the agent learn more sophisticated strategies.

(StreetFighterAI) PS C:\Users\unitec\Documents\AIProjects\street-fighter-ai>

python .\train_cv_sf2_ai.py

Using cuda device

Current state: ChampionX.Level3.ChunLiVsZangief

| time/ | |

| fps | 3037 |

| iterations | 1 |

| time_elapsed | 14 |

| total_timesteps | 43200 |

Current state: ChampionX.Level2.ChunLiVsChunLi

| time/ | |

| fps | 1098 |

| iterations | 2 |

| time_elapsed | 78 |

| total_timesteps | 86400 |

| train/ | |

| approx_kl | 0.007698648 |

| clip_fraction | 0.0657 |

| clip_range | 0.2 |

| entropy_loss | -8.31 |

| explained_variance | 0.000153 |

| learning_rate | 0.0003 |

| loss | 6.11 |

| n_updates | 10 |

| policy_gradient_loss | -0.00264 |

| value_loss | 345 |

Current state: ChampionX.Level11.ChunLiVsSagat

| time/ | |

| fps | 917 |

| iterations | 3 |

| time_elapsed | 141 |

| total_timesteps | 129600 |

| train/ | |

| approx_kl | 0.009709194 |

| clip_fraction | 0.0923 |

| clip_range | 0.2 |

| entropy_loss | -8.3 |

| explained_variance | 0.0386 |

| learning_rate | 0.0003 |

| loss | 1.1 |

| n_updates | 20 |

| policy_gradient_loss | -0.00351 |

| value_loss | 185 |

Current state: ChampionX.Level11.ChunLiVsSagat

| time/ | |

| fps | 848 |

| iterations | 4 |

| time_elapsed | 203 |

| total_timesteps | 172800 |

| train/ | |

| approx_kl | 0.011117109 |

| clip_fraction | 0.129 |

| clip_range | 0.2 |

| entropy_loss | -8.3 |

| explained_variance | 0.177 |

| learning_rate | 0.0003 |

| loss | 0.248 |

| n_updates | 30 |

| policy_gradient_loss | -0.00588 |

| value_loss | 55.4 |

Current state: ChampionX.Level10.ChunLiVsVega

| time/ | |

| fps | 676 |

| iterations | 22 |

| time_elapsed | 1405 |

| total_timesteps | 950400 |

| train/ | |

| approx_kl | 0.012083062 |

| clip_fraction | 0.124 |

| clip_range | 0.2 |

| entropy_loss | -8.24 |

| explained_variance | 0.783 |

| learning_rate | 0.0003 |

| loss | 0.744 |

| n_updates | 210 |

| policy_gradient_loss | -0.00613 |

| value_loss | 12.2 |

Current state: ChampionX.Level6.ChunLiVsEHonda

| time/ | |

| fps | 672 |

| iterations | 23 |

| time_elapsed | 1476 |

| total_timesteps | 993600 |

| train/ | |

| approx_kl | 0.013312282 |

| clip_fraction | 0.135 |

| clip_range | 0.2 |

| entropy_loss | -8.23 |

| explained_variance | 0.828 |

| learning_rate | 0.0003 |

| loss | 0.183 |

| n_updates | 220 |

| policy_gradient_loss | -0.00673 |

| value_loss | 14.2 |

Current state: ChampionX.Level10.ChunLiVsVega

| time/ | |

| fps | 672 |

| iterations | 24 |

| time_elapsed | 1541 |

| total_timesteps | 1036800 |

| train/ | |

| approx_kl | 0.013805277 |

| clip_fraction | 0.149 |

| clip_range | 0.2 |

| entropy_loss | -8.23 |

| explained_variance | 0.847 |

| learning_rate | 0.0003 |

| loss | 0.533 |

| n_updates | 230 |

| policy_gradient_loss | -0.0085 |

| value_loss | 7.17 |

Current state: ChampionX.Level6.ChunLiVsEHonda

| time/ | |

| fps | 673 |

| iterations | 25 |

| time_elapsed | 1604 |

| total_timesteps | 1080000 |

| train/ | |

| approx_kl | 0.017920382 |

| clip_fraction | 0.215 |

| clip_range | 0.2 |

| entropy_loss | -8.22 |

| explained_variance | 0.856 |

| learning_rate | 0.0003 |

| loss | 0.336 |

| n_updates | 240 |

| policy_gradient_loss | -9.4e-05 |

| value_loss | 12.3 |

Current state: ChampionX.Level1.ChunLiVsKen

| time/ | |

| fps | 672 |

| iterations | 26 |

| time_elapsed | 1671 |

| total_timesteps | 1123200 |

| train/ | |

| approx_kl | 0.014107002 |

| clip_fraction | 0.162 |

| clip_range | 0.2 |

| entropy_loss | -8.22 |

| explained_variance | 0.859 |

| learning_rate | 0.0003 |

| loss | 1.56 |

| n_updates | 250 |

| policy_gradient_loss | -0.00895 |

| value_loss | 8.5 |

Current state: ChampionX.Level12.ChunLiVsBison

| time/ | |

| fps | 669 |

| iterations | 27 |

| time_elapsed | 1741 |

| total_timesteps | 1166400 |

| train/ | |

| approx_kl | 0.016536916 |

| clip_fraction | 0.175 |

| clip_range | 0.2 |

| entropy_loss | -8.22 |

| explained_variance | 0.876 |

| learning_rate | 0.0003 |

| loss | 0.144 |

| n_updates | 260 |

| policy_gradient_loss | -0.00681 |

| value_loss | 11.5 |

Current state: ChampionX.Level2.ChunLiVsChunLi

| time/ | |

| fps | 667 |

| iterations | 28 |

| time_elapsed | 1812 |

| total_timesteps | 1209600 |

| train/ | |

| approx_kl | 0.015923986 |

| clip_fraction | 0.176 |

| clip_range | 0.2 |

| entropy_loss | -8.22 |

| explained_variance | 0.893 |

| learning_rate | 0.0003 |

| loss | 0.823 |

| n_updates | 270 |

| policy_gradient_loss | -0.00515 |

| value_loss | 8.85 |

Current state: ChampionX.Level6.ChunLiVsEHonda

| time/ | |

| fps | 666 |

| iterations | 29 |

| time_elapsed | 1880 |

| total_timesteps | 1252800 |

| train/ | |

| approx_kl | 0.016105719 |

| clip_fraction | 0.169 |

| clip_range | 0.2 |

| entropy_loss | -8.24 |

| explained_variance | 0.843 |

| learning_rate | 0.0003 |

| loss | 0.531 |

| n_updates | 280 |

| policy_gradient_loss | -0.0054 |

| value_loss | 9.25 |

Current state: ChampionX.Level3.ChunLiVsZangief

| time/ | |

| fps | 666 |

| iterations | 30 |

| time_elapsed | 1943 |

| total_timesteps | 1296000 |

| train/ | |

| approx_kl | 0.017542148 |

| clip_fraction | 0.193 |

| clip_range | 0.2 |

| entropy_loss | -8.21 |

| explained_variance | 0.888 |

| learning_rate | 0.0003 |

| loss | 0.194 |

| n_updates | 290 |

| policy_gradient_loss | -0.00115 |

| value_loss | 9.41 |

This is the training log of the newest scripts. Could you comment on this new

training scheme? Is the training going on well? The resulted AI agent didn't

perform quite well. It often hit air instead of its opponent, and it doesn't know

how to defend itself. Could you provide some code suggestions in making it

better?

The training log provided gives some insights into the training process.

However, it is not enough to fully evaluate the new training scheme. To better

assess whether the training is going well, you should track the agent's

performance over time, for example, by plotting the average rewards, win/loss

rates, or episode lengths.

From the information provided, we can see that the agent's explained

variance is increasing, and the value loss is decreasing over time, which are

good indicators that the agent is learning. However, the fact that the agent is

not performing well in terms of hitting the opponent or defending itself

suggests that there is still room for improvement.

Here are some suggestions to enhance your agent's performance:

Improve reward shaping: Instead of using only win/loss and health-based

rewards, you can incorporate additional rewards or penalties that can help

the agent learn more effective behaviors. For example, you could reward

the agent for successfully blocking opponent attacks or penalize it for

missed attacks.

Exploration: Encourage the agent to explore a variety of actions during

training. One way to do this is to use an epsilon-greedy exploration

strategy or implement entropy regularization, which encourages the agent

to maintain a diverse action distribution.

Curriculum learning: Gradually increase the difficulty of the training

scenarios, allowing the agent to learn simpler skills first before moving on

to more complex situations.

Longer training: It's possible that the agent simply needs more time to

learn better strategies. Consider increasing the number of training

iterations or episodes.

Hyperparameter tuning: Experiment with different learning rates, discount

factors, or other hyperparameters that may affect the agent's learning

dynamics.

Use of demonstrations or imitation learning: If you have access to expert

gameplay data, you could use techniques like behavior cloning or

generative adversarial imitation learning to help the agent learn from

demonstrations.

As for code suggestions, it's difficult to provide specific guidance without

seeing your implementation. However, you can consider the following high-

level implementation ideas based on the suggestions above:

Update your reward function to include additional terms that encourage

the desired behavior (e.g., successful blocks, penalizing missed attacks).

If you're using PPO, you can adjust the or clip_range clip_range_vf

parameters to encourage exploration, or you can add an entropy

regularization term to the loss function.

Implement a curriculum learning strategy by changing the difficulty of the

game scenarios as the agent's performance improves.

Increase the number of training iterations, episodes, or total timesteps.

Perform a hyperparameter search to find the best combination of learning

rates, discount factors, etc., for your specific problem.

If you have access to expert gameplay data, incorporate demonstration

data into your training pipeline using imitation learning techniques.

Remember that reinforcement learning can be sensitive to various factors,

and finding the right combination of techniques and parameters may require

some experimentation.

def _get_reward(self):

player_health_area = self.game_screen_gray[15:20, 32:120]

oppoent_health_area = self.game_screen_gray[15:20, 136:224]

Get health points using the number of pixels above 129.

player_health = np.sum(player_health_area > 129) /

player_health_area.size

opponent_health = np.sum(oppoent_health_area > 129) /

oppoent_health_area.size

player_health_diff = self.prev_player_health - player_health

opponent_health_diff = self.prev_opponent_health - opponent_health

reward = (opponent_health_diff - player_health_diff) * 100 # max would

be 100

Penalty for each step without any change in health

if player_health_diff == 0 and opponent_health_diff == 0:

reward -= 12.0 / 60.0 # -12 points per idle second

self.prev_player_health = player_health

self.prev_opponent_health = opponent_health

Print the health values of the player and the opponent

print("Player health: %f Opponent health:%f" % (player_health,

opponent_health))

return reward

In the reward function here, would it be better if I change the "Penalty for

each step without any change in health" to only penalize when the opponent

does take a damage? I think it makes more sense.

if opponent_health_diff == 0:

reward -= 12.0 / 60.0 # -12 points per idle second

Besides, should we also use "(player_health - opponent_health)*100" as a

reward to encourage the agent maintain a higher health than its opponent?

Yes, changing the penalty condition to penalize only when the opponent does

not take any damage makes more sense. This will encourage the AI agent to

be more aggressive and try to hit the opponent more frequently.

Regarding the additional reward term you proposed, adding (player_health

to the reward can indeed encourage the agent - opponent_health) * 100

to maintain a higher health than its opponent. However, since the existing

reward function already considers the health difference between the player

and the opponent, this term might be redundant. Instead, you can consider

increasing the weight of the current reward term (opponent_health_diff -

. player_health_diff) * 100

For example, you can try multiplying the term by a factor, like 1.5 or 2:

python Copy code

reward = 1.5 * (opponent_health_diff - player_health_diff) * 100

This will emphasize the importance of maintaining a higher health difference

between the AI agent and its opponent. Experimenting with different weights

will help you find the best balance for your AI agent's performance.

| time/ | |

| fps | 1061 |

| iterations | 2 |

| time_elapsed | 81 |

| total_timesteps | 86400 |

| train/ | |

| approx_kl | 0.007369663 |

| clip_fraction | 0.048 |

| clip_range | 0.2 |

| entropy_loss | -8.31 |

| explained_variance | -0.00013 |

| learning_rate | 0.0003 |

| loss | 8.81 |

| n_updates | 10 |

| policy_gradient_loss | -0.00265 |

| value_loss | 372 |

How can I let the terminal output average award in each round? I don't see it

in current training log.

To log the average reward in each round, you can add a custom logging

function to your training loop. First, you need to keep track of the cumulative

rewards and the number of episodes completed. Then, calculate the average

reward and log it.

Here's an example of how you can modify your training loop to log the

average reward per round:

Add two new variables to keep track of the cumulative rewards and the

number of episodes:

python Copy code

cumulative_rewards = 0

num_episodes = 0

Update these variables in the loop where the environment is being

stepped through. When the episode ends (i.e., when is True), done

increment the counter and add the reward to the num_episodes

: cumulative_rewards

python Copy code

for step in range (total_timesteps):

action, _ = model.predict(obs, deterministic= False)

obs, reward, done, info = env.step(action)

cumulative_rewards += reward

if done:

num_episodes += 1

obs = env.reset()

Calculate the average reward and log it during training, along with the

other training metrics:

python Copy code

if step % log_interval == 0 and step > 0 :

avg_reward = cumulative_rewards / num_episodes

print (f"Step {step} : Average reward per round: {avg_reward: .2 f}

cumulative_rewards = 0

num_episodes = 0

Make sure to replace with the total number of timesteps total_timesteps

for your training, and with the interval at which you want to log_interval

log the average reward. The code snippet above assumes that you are using a

single environment. If you are using a vectorized environment (e.g.,

or), you need to handle the cumulative DummyVecEnv SubprocVecEnv

rewards and flags for each environment instance separately. done

Now, your terminal output should include the average reward per round at the

specified logging interval.

model = PPO(

"CnnPolicy",

env,

device="cuda",

policy_kwargs=policy_kwargs,

verbose=1,

n_steps=5400,

batch_size=64,

n_epochs=10,

learning_rate=0.0003,

ent_coef=0.01,

clip_range=0.2,

clip_range_vf=None,

gamma=0.99,

gae_lambda=0.95,

max_grad_norm=0.5,

use_sde=False,

sde_sample_freq=-1

)

Set the save directory

save_dir = "trained_models_cv_customcnn_time_penalty"

os.makedirs(save_dir, exist_ok=True)

Set up callbacks

opponent_interval = 5400 # stage_interval * num_envs =

total_steps_per_stage

checkpoint_interval = 54000 # checkpoint_interval * num_envs =

total_steps_per_checkpoint (Every 80 rounds)

checkpoint_callback = CheckpointCallback(save_freq=checkpoint_interval,

save_path=save_dir, name_prefix="ppo_chunli")

stage_increase_callback =

RandomOpponentChangeCallback(state_stages, opponent_interval,

save_dir)

model.learn(

total_timesteps=int(6048000), # total_timesteps = stage_interval *

num_envs * num_stages (1120 rounds)

callback=[checkpoint_callback, stage_increase_callback]

)

Can I simply set up the model here to reveal the award information?

Yes, you can modify the method in the PPO model to log the average learn

reward per round. However, this involves modifying the source code of the

Stable Baselines library, which might not be the most straightforward

approach.

An alternative is to create a custom callback function that logs the average

reward per round. Here's an example of a custom callback that logs the

average reward:

python Copy code

from stable_baselines3.common.callbacks import BaseCallback

class AvgRewardLogger (BaseCallback):

def __init__ (self, log_interval):

super (AvgRewardLogger, self).__init__()

self.log_interval = log_interval

self.cumulative_rewards = 0

self.num_episodes = 0

def _on_step (self):

reward = self. locals .get('reward')

done = self. locals .get('done')

if reward is not None and done is not None :

self.cumulative_rewards += reward

if done:

self.num_episodes += 1

if self.num_timesteps % self.log_interval == 0 and self.num_timesteps

avg_reward = self.cumulative_rewards / self.num_episodes

print (f"Step {self.num_timesteps} : Average reward

self.cumulative_rewards = 0

self.num_episodes = 0

return True

Now, include this custom callback in your call, along with model.learn()

your existing callbacks:

python Copy code

avg_reward_logger = AvgRewardLogger(log_interval= 5400)

model.learn(

total_timesteps= int (6048000), # total_timesteps = stage_interval

callback=[checkpoint_callback, stage_increase_callback, avg_reward_logger]

)

This will log the average reward per round at the specified logging interval (in

this example, 5400 steps).

I found a paper on AI agent design in fighting games:

One of the most noticeable fighting styles to invest with is

the degree of aggressiveness. We used three dimensions of

rewards to control the degree of aggressiveness. The first di�mension is the

“time penalty”. The aggressive agent re�ceives larger penalties per time step,

and this motivates it to

finish the match in a shorter period of time. The second di�mension is the

relative importance of the agent’s HP to the

opponent’s HP. Aggressive players will try to reduce the op�ponent's HP

rather than preserving their own HP, while de�fensive players tend to act the

opposite way. The final di�mension is the “distance penalty”. Defensive players

tend to

ensure a certain distance from their opponents to respond

appropriately against attacks, while aggressive players tend

to approach their opponents and attack relentlessly. To real�ize these

properties, the aggressive agent received larger

penalties in proportion compared to the distance between it�self and its

opponent. The specific reward weights used for

each style are shown in Table 2. Note that each of these three

dimensions can take continuous values. This means that it is

possible to create a spectrum of different fighting styles with

varying degrees of aggressiveness. However, to effectively

demonstrate the viability of this method, we limited the

number of fighting styles to three. By using any type of ad�ditional reward

signals along with ＠†��

��� and ＠†��

�� , this

method could be applied to other fighting games in general

to create agents with various fighting styles.

Please tell me how the reward function is designed? How could that help our

Street Fighter II AI agent design?

The reward function mentioned in the paper is designed to create AI agents

with varying degrees of aggressiveness in fighting games. They use three

dimensions to control the agent's aggressiveness:

Time penalty: The agent receives a larger penalty for each time step,

motivating it to finish the match quickly. Aggressive agents will have a

higher time penalty, while defensive agents will have a lower time penalty.

Relative importance of agent's HP (health points) to opponent's HP:

Aggressive players focus on reducing their opponent's HP rather than

preserving their own HP. Defensive players tend to prioritize preserving

their own HP. The reward function will be designed to account for this

difference in priorities.

Distance penalty: Defensive players maintain a certain distance from their

opponents to better react to attacks, while aggressive players tend to get

closer and attack relentlessly. The aggressive agent receives larger

penalties in proportion to the distance between itself and its opponent.

These three dimensions can take continuous values, allowing the creation of a

spectrum of different fighting styles with varying degrees of aggressiveness.

In the context of your Street Fighter II AI agent, you can adapt the reward

function to incorporate these dimensions to encourage different styles of

play.

Here's an example of how you could modify your reward function to include

these dimensions:

python Copy code

def _get_reward (self, time_penalty_weight, hp_weight, distance_penalty_weight

... (the rest of your current reward function)

Time penalty

time_penalty = -time_penalty_weight * (12.0 / 60.0)

Relative importance of agent's HP to opponent's HP

hp_difference = (player_health - opponent_health) * hp_weight

Distance penalty

player_pos = ... # Get player position

opponent_pos = ... # Get opponent position

distance = np.linalg.norm(player_pos - opponent_pos)

distance_penalty = -distance_penalty_weight * distance

reward += time_penalty + hp_difference + distance_penalty

return reward

You can then adjust the , , and time_penalty_weight hp_weight

values to create agents with different levels of distance_penalty_weight

aggressiveness. The higher the weight, the more the agent will prioritize that

aspect of the reward function. You can experiment with different weight

values to find a combination that works well for your AI agent.

Experiments

Implementation Details

Network

The network is composed of LSTM-based architecture

which has four heads with a shared state representation layer.

Each head consists of �ￄ쓄����� , �ￄ쓄����� , �������,����＠†������ and

�������,����＠†������ . �ￄ쓄����� and �������,����＠†������ are used for the gradi�ent update of

�ￄ쓄����� and �������,����＠†������ , respectively. Before

the network output goes into the softmax layer, a Boolean

vector indicating the availability of each skill operates to

make the output of unavailable skill to negative infinity.

Algorithm

We used actor-critic off-policy learning algorithm (Wang et

al. 2017). It enables us to deal with policy lag between the

Figure 4. Examples of (a) regular move decisions and (b) main�taining

decisions for 1 second

simulators and learner through truncated importance sam�pling. Moreover, we

could also use the advantages of sto�chastic policy, which responds more

stably to changes in the

environment due to smooth policy updates and works well

in the domain of games like rock-scissors-paper where de�terministic policy

is vulnerable to exploitation. For this spe�cific algorithm, both �ￄ쓄����� and

�������,����＠†������ are updated in

an alternating manner with following gradient:

����

������＠† = �̅��∇�������

(����

|����

)[�

＠†����(����

, ����

) − ￡���

(����

)] +

���~� ([

���

(��) − ��

���(��)

]

+

∇�������

(��|����

)[����

(����

, ��) − ￡���

(����

)]),

where �̅�� = min{��, ���

} with behavior policy � and im�portance sampling ratio ��� =

�(����

|����

)

�(����

|����

)

. [��]+ = �� ���� �� >

0 and zero otherwise.

Learning System

In total, there are three learning processes with each learning

process consisting of a learner and 100 simulators. Each

learning process is largely similar to that proposed by Hor�gan et al. (2018).

The final agent is trained for two weeks,

which is equivalent to four years of game play.

Based on the paper, how is their neural network and policy designed? Could

that be applied to our Street Fighter II agent? Will it be helpful?

The paper describes a neural network with an LSTM-based architecture and

four heads sharing a state representation layer. The four heads include:

�ￄ쓄����� (Policy for skills)

�ￄ쓄����� (Value function for skills)

�������,����＠†������ (Policy for move and target selection)

�������,����＠†������ (Value function for move and target selection)

The neural network takes into account the availability of each skill and adjusts

its output accordingly. The algorithm they used is an actor-critic off-policy

learning algorithm, specifically ACER (Wang et al., 2017). ACER enables

handling policy lag and benefits from the advantages of stochastic policies,

which can respond more stably to environmental changes and work well in

domains with non-deterministic outcomes.

The learning system consists of three separate learning processes, with each

learning process having a learner and 100 simulators. The agent is trained for

an equivalent of four years of gameplay.

You can apply this neural network and policy design to your Street Fighter II

agent, as it should be adaptable to the context of the game. The LSTM-based

architecture can help in learning temporal dependencies in the game, while

the actor-critic off-policy learning with ACER can improve the agent's ability

to learn and adapt its strategy. This approach can help you create a more

versatile and adaptive AI agent

Could you provide the code?

Unfortunately, the paper you mentioned does not provide the specific

implementation code. However, I can help you get started with a basic

implementation using PyTorch and Stable Baselines 3, which you can further

customize and refine based on the paper's methodology.

First, let's create a custom policy with a shared LSTM layer and separate

heads for skills and move-target selection. This code assumes you have

already imported the necessary PyTorch and Stable Baselines 3 libraries.

python Copy code

import torch

import torch.nn as nn

import torch.nn.functional as F

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

class CustomPolicy (BaseFeaturesExtractor):

def __init__ (self, observation_space, features_dim):

super (CustomPolicy, self).__init__(observation_space, features_dim)

self.lstm = nn.LSTM(input_size=observation_space.shape[0],

self.skill_policy = nn.Linear(64 , num_skills)

self.skill_value = nn.Linear(64 , 1)

self.move_target_policy = nn.Linear(64 , num_move_targets)

self.move_target_value = nn.Linear(64 , 1)

def forward (self, x):

x, _ = self.lstm(x)

x = x[:, - 1 , :]

skill_policy = self.skill_policy(x)

skill_value = self.skill_value(x)

move_target_policy = self.move_target_policy(x)

move_target_value = self.move_target_value(x)

return skill_policy, skill_value, move_target_policy, move_target_value

Now, you can create a

continue

Now, you can create a custom ACER agent using your custom policy with the

following code snippet:

python Copy code

from stable_baselines3 import ACER

from stable_baselines3.common.policies import ActorCriticPolicy

from stable_baselines3.common.torch_layers import BaseFeaturesExtractor

from stable_baselines3.common.vec_env import DummyVecEnv

import gym

Define the custom features extractor that uses the CustomPolicy

class CustomFeaturesExtractor (BaseFeaturesExtractor):

def __init__ (self, observation_space: gym.Space):

super (CustomFeaturesExtractor, self).__init__(observation_space,

self.custom_policy = CustomPolicy(observation_space, features_dim=

def forward (self, observations: torch.Tensor) -> torch.Tensor:

skill_policy, skill_value, move_target_policy, move_target_value

Combine the heads' output. You may want to customize this

policy = torch.cat((skill_policy, move_target_policy), dim=-

value = skill_value + move_target_value

return policy, value

Define a custom actor-critic policy that uses the CustomFeaturesExtractor

class CustomActorCriticPolicy (ActorCriticPolicy):

def __init__ (self, observation_space: gym.Space, action_space:

super (CustomActorCriticPolicy, self).__init__(observation_space,

self.features_extractor = CustomFeaturesExtractor(observation_space)

Create the environment

env = gym.make('YourStreetFighterEnvironment')

env = DummyVecEnv([lambda : env]) # For multi-environment support

Instantiate the agent

model = ACER(CustomActorCriticPolicy, env, verbose= 1)

Train the agent

model.learn(total_timesteps= int (1e6))

In the code above, replace with the 'YourStreetFighterEnvironment'

actual name of the environment you want to use. This example uses the

custom policy with the ACER algorithm. The custom features extractor

combines the outputs of the separate heads, which you may want to

customize further for your specific use case.

Please note that this is a starting point for implementing the custom policy

and agent. You might need to make further adjustments and refinements to

match the approach described in the paper.

Wait, is this based on raw pixel information? All I have is game screen.

My apologies for the confusion. The previous example didn't explicitly handle

raw pixel information. To process raw pixel inputs, you need to modify the

class to handle raw pixel input and extract CustomFeaturesExtractor

features accordingly. You can use convolutional neural network (CNN) layers

to process the raw pixel input. Here's an example:

python Copy code

import torch

import torch.nn as nn

class CustomFeaturesExtractor (BaseFeaturesExtractor):

def __init__ (self, observation_space: gym.Space):

super (CustomFeaturesExtractor, self).__init__(observation_space,

self.cnn_layers = nn.Sequential(

nn.Conv2d(observation_space.shape[0], 32 , kernel_size=

nn.ReLU(),

nn.Conv2d(32 , 64 , kernel_size= 4 , stride= 2),

nn.ReLU(),

nn.Conv2d(64 , 64 , kernel_size= 3 , stride= 1),

nn.ReLU(),

nn.Flatten(),

)

self.custom_policy = CustomPolicy(observation_space, features_dim=

def forward (self, observations: torch.Tensor) -> torch.Tensor:

features = self.cnn_layers(observations)

skill_policy, skill_value, move_target_policy, move_target_value

Combine the heads' output. You may want to customize this

policy = torch.cat((skill_policy, move_target_policy), dim=-

value = skill_value + move_target_value

return policy, value

In this example, I added a CNN layers before passing the features to the

. This should now handle raw pixel input from the game CustomPolicy

screen. Note that you may need to adjust the CNN architecture and the

parameter to fit your specific case. features_dim

