(StreetFighterAI) PS C:\Users\unitec\Documents\AIProjects\street-fighter-ai> python .\train_street_fighter_ai.py Importing StreetFighterIISpecialChampionEdition-Genesis Imported 1 games Using cuda device Wrapping the env in a VecTransposeImage. ------------------------------ | time/ | | | fps | 990 | | iterations | 1 | | time_elapsed | 21 | | total_timesteps | 21600 | ------------------------------ --------------------------------------- | time/ | | | fps | 339 | | iterations | 2 | | time_elapsed | 127 | | total_timesteps | 43200 | | train/ | | | approx_kl | 56.143074 | | clip_fraction | 0.975 | | clip_range | 0.2 | | entropy_loss | -1.29 | | explained_variance | 1.98e-05 | | learning_rate | 0.00025 | | loss | 771 | | n_updates | 10 | | policy_gradient_loss | 0.302 | | value_loss | 1.81e+05 | --------------------------------------- --------------------------------------- | time/ | | | fps | 284 | | iterations | 3 | | time_elapsed | 227 | | total_timesteps | 64800 | | train/ | | | approx_kl | 0.6508633 | | clip_fraction | 0.195 | | clip_range | 0.2 | | entropy_loss | -0.256 | | explained_variance | -0.059 | | learning_rate | 0.00025 | | loss | 26.3 | | n_updates | 20 | | policy_gradient_loss | 0.00946 | | value_loss | 465 | --------------------------------------- ---------------------------------------- | time/ | | | fps | 262 | | iterations | 4 | | time_elapsed | 328 | | total_timesteps | 86400 | | train/ | | | approx_kl | 0.48297837 | | clip_fraction | 0.343 | | clip_range | 0.2 | | entropy_loss | -1.01 | | explained_variance | 0.523 | | learning_rate | 0.00025 | | loss | 2.51 | | n_updates | 30 | | policy_gradient_loss | -0.0343 | | value_loss | 5.95 | ---------------------------------------- --------------------------------------- | time/ | | | fps | 251 | | iterations | 5 | | time_elapsed | 428 | | total_timesteps | 108000 | | train/ | | | approx_kl | 7.8073545 | | clip_fraction | 0.45 | | clip_range | 0.2 | | entropy_loss | -0.067 | | explained_variance | 0.0212 | | learning_rate | 0.00025 | | loss | 47.4 | | n_updates | 40 | | policy_gradient_loss | 0.129 | | value_loss | 810 | --------------------------------------- ---------------------------------------- | time/ | | | fps | 244 | | iterations | 6 | | time_elapsed | 529 | | total_timesteps | 129600 | | train/ | | | approx_kl | 0.21164177 | | clip_fraction | 0.156 | | clip_range | 0.2 | | entropy_loss | -0.398 | | explained_variance | -0.251 | | learning_rate | 0.00025 | | loss | 43.3 | | n_updates | 50 | | policy_gradient_loss | -0.00713 | | value_loss | 87.6 | ---------------------------------------- ---------------------------------------- | time/ | | | fps | 240 | | iterations | 7 | | time_elapsed | 628 | | total_timesteps | 151200 | | train/ | | | approx_kl | 0.52084094 | | clip_fraction | 0.374 | | clip_range | 0.2 | | entropy_loss | -0.571 | | explained_variance | 0.135 | | learning_rate | 0.00025 | | loss | 5.23 | | n_updates | 60 | | policy_gradient_loss | 0.0252 | | value_loss | 401 | ---------------------------------------- ---------------------------------------- | time/ | | | fps | 237 | | iterations | 8 | | time_elapsed | 728 | | total_timesteps | 172800 | | train/ | | | approx_kl | 0.79960424 | | clip_fraction | 0.342 | | clip_range | 0.2 | | entropy_loss | -0.483 | | explained_variance | 0.231 | | learning_rate | 0.00025 | | loss | 50.3 | | n_updates | 70 | | policy_gradient_loss | 0.0144 | | value_loss | 770 | ---------------------------------------- ---------------------------------------- | time/ | | | fps | 234 | | iterations | 9 | | time_elapsed | 827 | | total_timesteps | 194400 | | train/ | | | approx_kl | 0.16273381 | | clip_fraction | 0.409 | | clip_range | 0.2 | | entropy_loss | -0.701 | | explained_variance | 0.3 | | learning_rate | 0.00025 | | loss | 891 | | n_updates | 80 | | policy_gradient_loss | 0.00848 | | value_loss | 459 | ---------------------------------------- ---------------------------------------- | time/ | | | fps | 232 | | iterations | 10 | | time_elapsed | 928 | | total_timesteps | 216000 | | train/ | | | approx_kl | 0.26048473 | | clip_fraction | 0.366 | | clip_range | 0.2 | | entropy_loss | -0.829 | | explained_variance | 0.675 | | learning_rate | 0.00025 | | loss | 7.25 | | n_updates | 90 | | policy_gradient_loss | -0.00101 | | value_loss | 32.3 | ---------------------------------------- ----------------------------------------- | time/ | | | fps | 230 | | iterations | 11 | | time_elapsed | 1028 | | total_timesteps | 237600 | | train/ | | | approx_kl | 0.124250144 | | clip_fraction | 0.362 | | clip_range | 0.2 | | entropy_loss | -1.05 | | explained_variance | 0.801 | | learning_rate | 0.00025 | | loss | 3.48 | | n_updates | 100 | | policy_gradient_loss | 0.0428 | | value_loss | 14 | ----------------------------------------- --------------------------------------- | time/ | | | fps | 229 | | iterations | 12 | | time_elapsed | 1128 | | total_timesteps | 259200 | | train/ | | | approx_kl | 0.6506246 | | clip_fraction | 0.387 | | clip_range | 0.2 | | entropy_loss | -1.02 | | explained_variance | 0.82 | | learning_rate | 0.00025 | | loss | 1.37 | | n_updates | 110 | | policy_gradient_loss | -0.0139 | | value_loss | 8.15 | --------------------------------------- --------------------------------------- | time/ | | | fps | 231 | | iterations | 13 | | time_elapsed | 1212 | | total_timesteps | 280800 | | train/ | | | approx_kl | 2.5178356 | | clip_fraction | 0.418 | | clip_range | 0.2 | | entropy_loss | -1.07 | | explained_variance | 0.153 | | learning_rate | 0.00025 | | loss | 2.92 | | n_updates | 120 | | policy_gradient_loss | 0.0904 | | value_loss | 387 | --------------------------------------- --------------------------------------- | time/ | | | fps | 230 | | iterations | 14 | | time_elapsed | 1312 | | total_timesteps | 302400 | | train/ | | | approx_kl | 1.4066175 | | clip_fraction | 0.206 | | clip_range | 0.2 | | entropy_loss | -0.592 | | explained_variance | 0.599 | | learning_rate | 0.00025 | | loss | 1.15e+03 | | n_updates | 130 | | policy_gradient_loss | 0.062 | | value_loss | 4.33e+03 | --------------------------------------- --------------------------------------- | time/ | | | fps | 229 | | iterations | 15 | | time_elapsed | 1412 | | total_timesteps | 324000 | | train/ | | | approx_kl | 0.7943301 | | clip_fraction | 0.382 | | clip_range | 0.2 | | entropy_loss | -0.724 | | explained_variance | 0.499 | | learning_rate | 0.00025 | | loss | 5.47 | | n_updates | 140 | | policy_gradient_loss | 0.0461 | | value_loss | 99.8 | --------------------------------------- --------------------------------------- | time/ | | | fps | 228 | | iterations | 16 | | time_elapsed | 1512 | | total_timesteps | 345600 | | train/ | | | approx_kl | 1.1466624 | | clip_fraction | 0.162 | | clip_range | 0.2 | | entropy_loss | -0.534 | | explained_variance | 0.508 | | learning_rate | 0.00025 | | loss | 43.9 | | n_updates | 150 | | policy_gradient_loss | 0.0443 | | value_loss | 330 | --------------------------------------- --------------------------------------- | time/ | | | fps | 227 | | iterations | 17 | | time_elapsed | 1612 | | total_timesteps | 367200 | | train/ | | | approx_kl | 0.3199593 | | clip_fraction | 0.0612 | | clip_range | 0.2 | | entropy_loss | -0.236 | | explained_variance | 0.639 | | learning_rate | 0.00025 | | loss | 9.64 | | n_updates | 160 | | policy_gradient_loss | 0.0129 | | value_loss | 217 | --------------------------------------- ---------------------------------------- | time/ | | | fps | 227 | | iterations | 18 | | time_elapsed | 1712 | | total_timesteps | 388800 | | train/ | | | approx_kl | 0.38865572 | | clip_fraction | 0.0371 | | clip_range | 0.2 | | entropy_loss | -0.332 | | explained_variance | 0.494 | | learning_rate | 0.00025 | | loss | 12.6 | | n_updates | 170 | | policy_gradient_loss | 0.00872 | | value_loss | 134 | ---------------------------------------- --------------------------------------- | time/ | | | fps | 226 | | iterations | 19 | | time_elapsed | 1812 | | total_timesteps | 410400 | | train/ | | | approx_kl | 0.8817278 | | clip_fraction | 0.0944 | | clip_range | 0.2 | | entropy_loss | -0.219 | | explained_variance | 0.727 | | learning_rate | 0.00025 | | loss | 4.68 | | n_updates | 180 | | policy_gradient_loss | 0.00855 | | value_loss | 29.2 | --------------------------------------- --------------------------------------- | time/ | | | fps | 225 | | iterations | 20 | | time_elapsed | 1914 | | total_timesteps | 432000 | | train/ | | | approx_kl | 3.7763007 | | clip_fraction | 0.25 | | clip_range | 0.2 | | entropy_loss | -0.327 | | explained_variance | 0.484 | | learning_rate | 0.00025 | | loss | 25.8 | | n_updates | 190 | | policy_gradient_loss | 0.0522 | | value_loss | 162 | --------------------------------------- --------------------------------------- | time/ | | | fps | 225 | | iterations | 21 | | time_elapsed | 2014 | | total_timesteps | 453600 | | train/ | | | approx_kl | 1.8167689 | | clip_fraction | 0.146 | | clip_range | 0.2 | | entropy_loss | -0.371 | | explained_variance | 0.699 | | learning_rate | 0.00025 | | loss | 7.1 | | n_updates | 200 | | policy_gradient_loss | 0.0449 | | value_loss | 68.5 | --------------------------------------- --------------------------------------- | time/ | | | fps | 224 | | iterations | 22 | | time_elapsed | 2113 | | total_timesteps | 475200 | | train/ | | | approx_kl | 1.1459472 | | clip_fraction | 0.196 | | clip_range | 0.2 | | entropy_loss | -0.514 | | explained_variance | 0.549 | | learning_rate | 0.00025 | | loss | 4.31 | | n_updates | 210 | | policy_gradient_loss | 0.0242 | | value_loss | 112 | --------------------------------------- -------------------------------------- | time/ | | | fps | 224 | | iterations | 23 | | time_elapsed | 2213 | | total_timesteps | 496800 | | train/ | | | approx_kl | 7.641809 | | clip_fraction | 0.326 | | clip_range | 0.2 | | entropy_loss | -0.578 | | explained_variance | 0.527 | | learning_rate | 0.00025 | | loss | 813 | | n_updates | 220 | | policy_gradient_loss | 0.0566 | | value_loss | 235 | -------------------------------------- --------------------------------------- | time/ | | | fps | 223 | | iterations | 24 | | time_elapsed | 2314 | | total_timesteps | 518400 | | train/ | | | approx_kl | 4.9070067 | | clip_fraction | 0.351 | | clip_range | 0.2 | | entropy_loss | -0.692 | | explained_variance | 0.309 | | learning_rate | 0.00025 | | loss | 41.2 | | n_updates | 230 | | policy_gradient_loss | 0.067 | | value_loss | 146 | --------------------------------------- --------------------------------------- | time/ | | | fps | 223 | | iterations | 25 | | time_elapsed | 2413 | | total_timesteps | 540000 | | train/ | | | approx_kl | 20.996988 | | clip_fraction | 0.392 | | clip_range | 0.2 | | entropy_loss | -0.866 | | explained_variance | 0.292 | | learning_rate | 0.00025 | | loss | 80.3 | | n_updates | 240 | | policy_gradient_loss | 0.105 | | value_loss | 674 | --------------------------------------- --------------------------------------- | time/ | | | fps | 223 | | iterations | 26 | | time_elapsed | 2512 | | total_timesteps | 561600 | | train/ | | | approx_kl | 13.639556 | | clip_fraction | 0.322 | | clip_range | 0.2 | | entropy_loss | -0.783 | | explained_variance | 0.458 | | learning_rate | 0.00025 | | loss | 95.7 | | n_updates | 250 | | policy_gradient_loss | 0.103 | | value_loss | 3.24e+03 | --------------------------------------- --------------------------------------- | time/ | | | fps | 223 | | iterations | 27 | | time_elapsed | 2611 | | total_timesteps | 583200 | | train/ | | | approx_kl | 3.7484746 | | clip_fraction | 0.165 | | clip_range | 0.2 | | entropy_loss | -0.388 | | explained_variance | 0.487 | | learning_rate | 0.00025 | | loss | 19.5 | | n_updates | 260 | | policy_gradient_loss | 0.0665 | | value_loss | 267 | --------------------------------------- -------------------------------------- | time/ | | | fps | 223 | | iterations | 28 | | time_elapsed | 2711 | | total_timesteps | 604800 | | train/ | | | approx_kl | 4.639748 | | clip_fraction | 0.284 | | clip_range | 0.2 | | entropy_loss | -0.65 | | explained_variance | 0.513 | | learning_rate | 0.00025 | | loss | 15.4 | | n_updates | 270 | | policy_gradient_loss | 0.0702 | | value_loss | 251 | -------------------------------------- --------------------------------------- | time/ | | | fps | 222 | | iterations | 29 | | time_elapsed | 2812 | | total_timesteps | 626400 | | train/ | | | approx_kl | 6.0257225 | | clip_fraction | 0.3 | | clip_range | 0.2 | | entropy_loss | -0.582 | | explained_variance | 0.719 | | learning_rate | 0.00025 | | loss | 16.6 | | n_updates | 280 | | policy_gradient_loss | 0.0874 | | value_loss | 103 | --------------------------------------- --------------------------------------- | time/ | | | fps | 222 | | iterations | 30 | | time_elapsed | 2913 | | total_timesteps | 648000 | | train/ | | | approx_kl | 3.7680728 | | clip_fraction | 0.277 | | clip_range | 0.2 | | entropy_loss | -0.581 | | explained_variance | 0.702 | | learning_rate | 0.00025 | | loss | 11.9 | | n_updates | 290 | | policy_gradient_loss | 0.0532 | | value_loss | 203 | --------------------------------------- -------------------------------------- | time/ | | | fps | 222 | | iterations | 31 | | time_elapsed | 3014 | | total_timesteps | 669600 | | train/ | | | approx_kl | 3.082776 | | clip_fraction | 0.316 | | clip_range | 0.2 | | entropy_loss | -0.476 | | explained_variance | 0.786 | | learning_rate | 0.00025 | | loss | 9.55 | | n_updates | 300 | | policy_gradient_loss | 0.103 | | value_loss | 84 | -------------------------------------- --------------------------------------- | time/ | | | fps | 221 | | iterations | 32 | | time_elapsed | 3115 | | total_timesteps | 691200 | | train/ | | | approx_kl | 3.4251199 | | clip_fraction | 0.279 | | clip_range | 0.2 | | entropy_loss | -0.506 | | explained_variance | 0.508 | | learning_rate | 0.00025 | | loss | 12.9 | | n_updates | 310 | | policy_gradient_loss | 0.0868 | | value_loss | 146 | --------------------------------------- -------------------------------------- | time/ | | | fps | 221 | | iterations | 33 | | time_elapsed | 3215 | | total_timesteps | 712800 | | train/ | | | approx_kl | 6.858263 | | clip_fraction | 0.313 | | clip_range | 0.2 | | entropy_loss | -0.663 | | explained_variance | 0.363 | | learning_rate | 0.00025 | | loss | 14.2 | | n_updates | 320 | | policy_gradient_loss | 0.0548 | | value_loss | 819 | -------------------------------------- --------------------------------------- | time/ | | | fps | 221 | | iterations | 34 | | time_elapsed | 3321 | | total_timesteps | 734400 | | train/ | | | approx_kl | 6.3766594 | | clip_fraction | 0.309 | | clip_range | 0.2 | | entropy_loss | -0.61 | | explained_variance | 0.583 | | learning_rate | 0.00025 | | loss | 20.7 | | n_updates | 330 | | policy_gradient_loss | 0.145 | | value_loss | 128 | --------------------------------------- -------------------------------------- | time/ | | | fps | 220 | | iterations | 35 | | time_elapsed | 3422 | | total_timesteps | 756000 | | train/ | | | approx_kl | 8.304734 | | clip_fraction | 0.297 | | clip_range | 0.2 | | entropy_loss | -0.481 | | explained_variance | 0.744 | | learning_rate | 0.00025 | | loss | 5.62 | | n_updates | 340 | | policy_gradient_loss | 0.0571 | | value_loss | 137 | -------------------------------------- -------------------------------------- | time/ | | | fps | 220 | | iterations | 36 | | time_elapsed | 3522 | | total_timesteps | 777600 | | train/ | | | approx_kl | 8.265856 | | clip_fraction | 0.332 | | clip_range | 0.2 | | entropy_loss | -0.568 | | explained_variance | 0.765 | | learning_rate | 0.00025 | | loss | 104 | | n_updates | 350 | | policy_gradient_loss | 0.0557 | | value_loss | 868 | -------------------------------------- --------------------------------------- | time/ | | | fps | 220 | | iterations | 37 | | time_elapsed | 3622 | | total_timesteps | 799200 | | train/ | | | approx_kl | 4.0512986 | | clip_fraction | 0.238 | | clip_range | 0.2 | | entropy_loss | -0.54 | | explained_variance | 0.742 | | learning_rate | 0.00025 | | loss | 19 | | n_updates | 360 | | policy_gradient_loss | 0.0648 | | value_loss | 152 | --------------------------------------- -------------------------------------- | time/ | | | fps | 220 | | iterations | 38 | | time_elapsed | 3724 | | total_timesteps | 820800 | | train/ | | | approx_kl | 4.704707 | | clip_fraction | 0.296 | | clip_range | 0.2 | | entropy_loss | -0.446 | | explained_variance | 0.826 | | learning_rate | 0.00025 | | loss | 16.2 | | n_updates | 370 | | policy_gradient_loss | 0.0675 | | value_loss | 122 | -------------------------------------- --------------------------------------- | time/ | | | fps | 220 | | iterations | 39 | | time_elapsed | 3825 | | total_timesteps | 842400 | | train/ | | | approx_kl | 6.0659266 | | clip_fraction | 0.322 | | clip_range | 0.2 | | entropy_loss | -0.575 | | explained_variance | 0.825 | | learning_rate | 0.00025 | | loss | 7.31 | | n_updates | 380 | | policy_gradient_loss | 0.0479 | | value_loss | 66.3 | --------------------------------------- --------------------------------------- | time/ | | | fps | 220 | | iterations | 40 | | time_elapsed | 3925 | | total_timesteps | 864000 | | train/ | | | approx_kl | 12.445694 | | clip_fraction | 0.446 | | clip_range | 0.2 | | entropy_loss | -0.377 | | explained_variance | 0.541 | | learning_rate | 0.00025 | | loss | 18.8 | | n_updates | 390 | | policy_gradient_loss | 0.0929 | | value_loss | 465 | --------------------------------------- -------------------------------------- | time/ | | | fps | 219 | | iterations | 41 | | time_elapsed | 4026 | | total_timesteps | 885600 | | train/ | | | approx_kl | 4.830075 | | clip_fraction | 0.367 | | clip_range | 0.2 | | entropy_loss | -0.545 | | explained_variance | 0.791 | | learning_rate | 0.00025 | | loss | 14.7 | | n_updates | 400 | | policy_gradient_loss | 0.0392 | | value_loss | 45.2 | -------------------------------------- --------------------------------------- | time/ | | | fps | 219 | | iterations | 42 | | time_elapsed | 4126 | | total_timesteps | 907200 | | train/ | | | approx_kl | 5.4566507 | | clip_fraction | 0.37 | | clip_range | 0.2 | | entropy_loss | -0.511 | | explained_variance | 0.849 | | learning_rate | 0.00025 | | loss | 2.3 | | n_updates | 410 | | policy_gradient_loss | 0.0485 | | value_loss | 26.7 | --------------------------------------- --------------------------------------- | time/ | | | fps | 219 | | iterations | 43 | | time_elapsed | 4226 | | total_timesteps | 928800 | | train/ | | | approx_kl | 24.042978 | | clip_fraction | 0.591 | | clip_range | 0.2 | | entropy_loss | -0.584 | | explained_variance | 0.369 | | learning_rate | 0.00025 | | loss | 13.2 | | n_updates | 420 | | policy_gradient_loss | 0.138 | | value_loss | 342 | --------------------------------------- -------------------------------------- | time/ | | | fps | 219 | | iterations | 44 | | time_elapsed | 4327 | | total_timesteps | 950400 | | train/ | | | approx_kl | 4.391761 | | clip_fraction | 0.272 | | clip_range | 0.2 | | entropy_loss | -0.305 | | explained_variance | 0.616 | | learning_rate | 0.00025 | | loss | 10.5 | | n_updates | 430 | | policy_gradient_loss | 0.0732 | | value_loss | 215 | -------------------------------------- -------------------------------------- | time/ | | | fps | 219 | | iterations | 45 | | time_elapsed | 4428 | | total_timesteps | 972000 | | train/ | | | approx_kl | 8.628279 | | clip_fraction | 0.375 | | clip_range | 0.2 | | entropy_loss | -0.571 | | explained_variance | 0.679 | | learning_rate | 0.00025 | | loss | 9.41 | | n_updates | 440 | | policy_gradient_loss | 0.0514 | | value_loss | 164 | -------------------------------------- -------------------------------------- | time/ | | | fps | 219 | | iterations | 46 | | time_elapsed | 4527 | | total_timesteps | 993600 | | train/ | | | approx_kl | 6.843931 | | clip_fraction | 0.35 | | clip_range | 0.2 | | entropy_loss | -0.484 | | explained_variance | 0.686 | | learning_rate | 0.00025 | | loss | 10.1 | | n_updates | 450 | | policy_gradient_loss | 0.0829 | | value_loss | 143 | -------------------------------------- -------------------------------------- | time/ | | | fps | 219 | | iterations | 47 | | time_elapsed | 4626 | | total_timesteps | 1015200 | | train/ | | | approx_kl | 8.118596 | | clip_fraction | 0.416 | | clip_range | 0.2 | | entropy_loss | -0.567 | | explained_variance | 0.503 | | learning_rate | 0.00025 | | loss | 15.3 | | n_updates | 460 | | policy_gradient_loss | 0.0915 | | value_loss | 223 | -------------------------------------- -------------------------------------- | time/ | | | fps | 219 | | iterations | 48 | | time_elapsed | 4726 | | total_timesteps | 1036800 | | train/ | | | approx_kl | 8.13674 | | clip_fraction | 0.418 | | clip_range | 0.2 | | entropy_loss | -0.56 | | explained_variance | 0.562 | | learning_rate | 0.00025 | | loss | 26.2 | | n_updates | 470 | | policy_gradient_loss | 0.105 | | value_loss | 279 | -------------------------------------- --------------------------------------- | time/ | | | fps | 219 | | iterations | 49 | | time_elapsed | 4827 | | total_timesteps | 1058400 | | train/ | | | approx_kl | 4.1058106 | | clip_fraction | 0.274 | | clip_range | 0.2 | | entropy_loss | -0.296 | | explained_variance | 0.752 | | learning_rate | 0.00025 | | loss | 10.5 | | n_updates | 480 | | policy_gradient_loss | 0.0563 | | value_loss | 103 | --------------------------------------- --------------------------------------- | time/ | | | fps | 219 | | iterations | 50 | | time_elapsed | 4927 | | total_timesteps | 1080000 | | train/ | | | approx_kl | 15.120241 | | clip_fraction | 0.459 | | clip_range | 0.2 | | entropy_loss | -0.567 | | explained_variance | 0.423 | | learning_rate | 0.00025 | | loss | 30.3 | | n_updates | 490 | | policy_gradient_loss | 0.0974 | | value_loss | 320 | --------------------------------------- --------------------------------------- | time/ | | | fps | 219 | | iterations | 51 | | time_elapsed | 5028 | | total_timesteps | 1101600 | | train/ | | | approx_kl | 7.0906005 | | clip_fraction | 0.375 | | clip_range | 0.2 | | entropy_loss | -0.456 | | explained_variance | 0.564 | | learning_rate | 0.00025 | | loss | 25.2 | | n_updates | 500 | | policy_gradient_loss | 0.0861 | | value_loss | 324 | --------------------------------------- -------------------------------------- | time/ | | | fps | 218 | | iterations | 52 | | time_elapsed | 5128 | | total_timesteps | 1123200 | | train/ | | | approx_kl | 6.208802 | | clip_fraction | 0.353 | | clip_range | 0.2 | | entropy_loss | -0.531 | | explained_variance | 0.622 | | learning_rate | 0.00025 | | loss | 15.1 | | n_updates | 510 | | policy_gradient_loss | 0.0648 | | value_loss | 177 | -------------------------------------- -------------------------------------- | time/ | | | fps | 218 | | iterations | 53 | | time_elapsed | 5228 | | total_timesteps | 1144800 | | train/ | | | approx_kl | 7.811362 | | clip_fraction | 0.432 | | clip_range | 0.2 | | entropy_loss | -0.601 | | explained_variance | 0.666 | | learning_rate | 0.00025 | | loss | 29.4 | | n_updates | 520 | | policy_gradient_loss | 0.0799 | | value_loss | 219 | -------------------------------------- -------------------------------------- | time/ | | | fps | 218 | | iterations | 54 | | time_elapsed | 5327 | | total_timesteps | 1166400 | | train/ | | | approx_kl | 7.52061 | | clip_fraction | 0.405 | | clip_range | 0.2 | | entropy_loss | -0.52 | | explained_variance | 0.677 | | learning_rate | 0.00025 | | loss | 10.3 | | n_updates | 530 | | policy_gradient_loss | 0.0836 | | value_loss | 179 | -------------------------------------- -------------------------------------- | time/ | | | fps | 218 | | iterations | 55 | | time_elapsed | 5427 | | total_timesteps | 1188000 | | train/ | | | approx_kl | 4.918111 | | clip_fraction | 0.402 | | clip_range | 0.2 | | entropy_loss | -0.579 | | explained_variance | 0.805 | | learning_rate | 0.00025 | | loss | 14.4 | | n_updates | 540 | | policy_gradient_loss | 0.0698 | | value_loss | 184 | -------------------------------------- -------------------------------------- | time/ | | | fps | 218 | | iterations | 56 | | time_elapsed | 5528 | | total_timesteps | 1209600 | | train/ | | | approx_kl | 5.842441 | | clip_fraction | 0.37 | | clip_range | 0.2 | | entropy_loss | -0.437 | | explained_variance | 0.733 | | learning_rate | 0.00025 | | loss | 20 | | n_updates | 550 | | policy_gradient_loss | 0.0759 | | value_loss | 160 | -------------------------------------- -------------------------------------- | time/ | | | fps | 218 | | iterations | 57 | | time_elapsed | 5629 | | total_timesteps | 1231200 | | train/ | | | approx_kl | 6.230382 | | clip_fraction | 0.367 | | clip_range | 0.2 | | entropy_loss | -0.358 | | explained_variance | 0.769 | | learning_rate | 0.00025 | | loss | 11.6 | | n_updates | 560 | | policy_gradient_loss | 0.0837 | | value_loss | 123 | -------------------------------------- --------------------------------------- | time/ | | | fps | 218 | | iterations | 58 | | time_elapsed | 5730 | | total_timesteps | 1252800 | | train/ | | | approx_kl | 7.5136166 | | clip_fraction | 0.376 | | clip_range | 0.2 | | entropy_loss | -0.477 | | explained_variance | 0.675 | | learning_rate | 0.00025 | | loss | 16.6 | | n_updates | 570 | | policy_gradient_loss | 0.596 | | value_loss | 168 | --------------------------------------- -------------------------------------- | time/ | | | fps | 218 | | iterations | 59 | | time_elapsed | 5830 | | total_timesteps | 1274400 | | train/ | | | approx_kl | 4.328797 | | clip_fraction | 0.319 | | clip_range | 0.2 | | entropy_loss | -0.506 | | explained_variance | 0.714 | | learning_rate | 0.00025 | | loss | 3.97 | | n_updates | 580 | | policy_gradient_loss | 0.0452 | | value_loss | 96.6 | -------------------------------------- -------------------------------------- | time/ | | | fps | 218 | | iterations | 60 | | time_elapsed | 5932 | | total_timesteps | 1296000 | | train/ | | | approx_kl | 8.380802 | | clip_fraction | 0.388 | | clip_range | 0.2 | | entropy_loss | -0.29 | | explained_variance | 0.524 | | learning_rate | 0.00025 | | loss | 33.6 | | n_updates | 590 | | policy_gradient_loss | 0.0855 | | value_loss | 268 | -------------------------------------- --------------------------------------- | time/ | | | fps | 218 | | iterations | 61 | | time_elapsed | 6034 | | total_timesteps | 1317600 | | train/ | | | approx_kl | 7.3953514 | | clip_fraction | 0.399 | | clip_range | 0.2 | | entropy_loss | -0.38 | | explained_variance | 0.674 | | learning_rate | 0.00025 | | loss | 21.8 | | n_updates | 600 | | policy_gradient_loss | 0.0652 | | value_loss | 142 | --------------------------------------- --------------------------------------- | time/ | | | fps | 218 | | iterations | 62 | | time_elapsed | 6136 | | total_timesteps | 1339200 | | train/ | | | approx_kl | 6.8781967 | | clip_fraction | 0.446 | | clip_range | 0.2 | | entropy_loss | -0.481 | | explained_variance | 0.668 | | learning_rate | 0.00025 | | loss | 12.2 | | n_updates | 610 | | policy_gradient_loss | 0.0566 | | value_loss | 230 | --------------------------------------- --------------------------------------- | time/ | | | fps | 218 | | iterations | 63 | | time_elapsed | 6238 | | total_timesteps | 1360800 | | train/ | | | approx_kl | 15.005539 | | clip_fraction | 0.503 | | clip_range | 0.2 | | entropy_loss | -0.357 | | explained_variance | 0.601 | | learning_rate | 0.00025 | | loss | 11.9 | | n_updates | 620 | | policy_gradient_loss | 0.094 | | value_loss | 290 | --------------------------------------- -------------------------------------- | time/ | | | fps | 218 | | iterations | 64 | | time_elapsed | 6340 | | total_timesteps | 1382400 | | train/ | | | approx_kl | 8.899053 | | clip_fraction | 0.429 | | clip_range | 0.2 | | entropy_loss | -0.371 | | explained_variance | 0.692 | | learning_rate | 0.00025 | | loss | 31.5 | | n_updates | 630 | | policy_gradient_loss | 0.066 | | value_loss | 397 | -------------------------------------- --------------------------------------- | time/ | | | fps | 217 | | iterations | 65 | | time_elapsed | 6443 | | total_timesteps | 1404000 | | train/ | | | approx_kl | 7.4874077 | | clip_fraction | 0.414 | | clip_range | 0.2 | | entropy_loss | -0.448 | | explained_variance | 0.721 | | learning_rate | 0.00025 | | loss | 37.3 | | n_updates | 640 | | policy_gradient_loss | 0.0549 | | value_loss | 340 | --------------------------------------- -------------------------------------- | time/ | | | fps | 217 | | iterations | 66 | | time_elapsed | 6545 | | total_timesteps | 1425600 | | train/ | | | approx_kl | 7.90197 | | clip_fraction | 0.394 | | clip_range | 0.2 | | entropy_loss | -0.46 | | explained_variance | 0.81 | | learning_rate | 0.00025 | | loss | 30.7 | | n_updates | 650 | | policy_gradient_loss | 0.0613 | | value_loss | 386 | -------------------------------------- -------------------------------------- | time/ | | | fps | 217 | | iterations | 67 | | time_elapsed | 6648 | | total_timesteps | 1447200 | | train/ | | | approx_kl | 8.340442 | | clip_fraction | 0.474 | | clip_range | 0.2 | | entropy_loss | -0.397 | | explained_variance | 0.591 | | learning_rate | 0.00025 | | loss | 10.1 | | n_updates | 660 | | policy_gradient_loss | 0.0815 | | value_loss | 332 | -------------------------------------- -------------------------------------- | time/ | | | fps | 217 | | iterations | 68 | | time_elapsed | 6750 | | total_timesteps | 1468800 | | train/ | | | approx_kl | 6.413869 | | clip_fraction | 0.398 | | clip_range | 0.2 | | entropy_loss | -0.347 | | explained_variance | 0.715 | | learning_rate | 0.00025 | | loss | 10.5 | | n_updates | 670 | | policy_gradient_loss | 0.0582 | | value_loss | 187 | -------------------------------------- --------------------------------------- | time/ | | | fps | 217 | | iterations | 69 | | time_elapsed | 6851 | | total_timesteps | 1490400 | | train/ | | | approx_kl | 30.057222 | | clip_fraction | 0.532 | | clip_range | 0.2 | | entropy_loss | -0.359 | | explained_variance | 0.552 | | learning_rate | 0.00025 | | loss | 38.8 | | n_updates | 680 | | policy_gradient_loss | 0.112 | | value_loss | 676 | --------------------------------------- --------------------------------------- | time/ | | | fps | 217 | | iterations | 70 | | time_elapsed | 6952 | | total_timesteps | 1512000 | | train/ | | | approx_kl | 13.428986 | | clip_fraction | 0.376 | | clip_range | 0.2 | | entropy_loss | -0.345 | | explained_variance | 0.663 | | learning_rate | 0.00025 | | loss | 104 | | n_updates | 690 | | policy_gradient_loss | 0.0895 | | value_loss | 434 | --------------------------------------- --------------------------------------- | time/ | | | fps | 217 | | iterations | 71 | | time_elapsed | 7051 | | total_timesteps | 1533600 | | train/ | | | approx_kl | 16.452497 | | clip_fraction | 0.383 | | clip_range | 0.2 | | entropy_loss | -0.355 | | explained_variance | 0.618 | | learning_rate | 0.00025 | | loss | 33.7 | | n_updates | 700 | | policy_gradient_loss | 0.0797 | | value_loss | 527 | --------------------------------------- -------------------------------------- | time/ | | | fps | 217 | | iterations | 72 | | time_elapsed | 7152 | | total_timesteps | 1555200 | | train/ | | | approx_kl | 6.3227 | | clip_fraction | 0.338 | | clip_range | 0.2 | | entropy_loss | -0.424 | | explained_variance | 0.795 | | learning_rate | 0.00025 | | loss | 18.5 | | n_updates | 710 | | policy_gradient_loss | 0.0543 | | value_loss | 230 | -------------------------------------- -------------------------------------- | time/ | | | fps | 217 | | iterations | 73 | | time_elapsed | 7252 | | total_timesteps | 1576800 | | train/ | | | approx_kl | 9.170609 | | clip_fraction | 0.442 | | clip_range | 0.2 | | entropy_loss | -0.412 | | explained_variance | 0.711 | | learning_rate | 0.00025 | | loss | 53.1 | | n_updates | 720 | | policy_gradient_loss | 0.0672 | | value_loss | 422 | -------------------------------------- -------------------------------------- | time/ | | | fps | 217 | | iterations | 74 | | time_elapsed | 7354 | | total_timesteps | 1598400 | | train/ | | | approx_kl | 4.309461 | | clip_fraction | 0.332 | | clip_range | 0.2 | | entropy_loss | -0.402 | | explained_variance | 0.826 | | learning_rate | 0.00025 | | loss | 1.44e+03 | | n_updates | 730 | | policy_gradient_loss | 0.0632 | | value_loss | 239 | -------------------------------------- -------------------------------------- | time/ | | | fps | 217 | | iterations | 75 | | time_elapsed | 7455 | | total_timesteps | 1620000 | | train/ | | | approx_kl | 13.04697 | | clip_fraction | 0.441 | | clip_range | 0.2 | | entropy_loss | -0.325 | | explained_variance | 0.711 | | learning_rate | 0.00025 | | loss | 32.8 | | n_updates | 740 | | policy_gradient_loss | 0.0714 | | value_loss | 356 | --------------------------------------