street-fighter-ai/main/evaluate.py
2023-04-13 00:16:07 +08:00

47 lines
1.8 KiB
Python

# Copyright 2023 LIN Yi. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import retro
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.evaluation import evaluate_policy
from street_fighter_custom_wrapper import StreetFighterCustomWrapper
RESET_ROUND = True # Reset the round when fight is over.
RENDERING = False
MODEL_PATH = r"trained_models/ppo_ryu_2000000_steps"
def make_env(game, state):
def _init():
env = retro.make(
game=game,
state=state,
use_restricted_actions=retro.Actions.FILTERED,
obs_type=retro.Observations.IMAGE
)
env = StreetFighterCustomWrapper(env, reset_round=RESET_ROUND, rendering=RENDERING)
env = Monitor(env)
return env
return _init
game = "StreetFighterIISpecialChampionEdition-Genesis"
env = make_env(game, state="Champion.Level12.RyuVsBison")()
model = PPO("CnnPolicy", env)
model.load(MODEL_PATH)
mean_reward, std_reward = evaluate_policy(model, env, render=False, n_eval_episodes=5, deterministic=False, return_episode_rewards=True)
print(mean_reward)
print(std_reward)
# print(f"Reward: {mean_reward:.2f} +/- {std_reward:.2f}")