mirror of
https://github.com/linyiLYi/street-fighter-ai.git
synced 2025-04-03 22:50:43 +00:00
47 lines
1.8 KiB
Python
47 lines
1.8 KiB
Python
# Copyright 2023 LIN Yi. All Rights Reserved.
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
import retro
|
|
|
|
from stable_baselines3 import PPO
|
|
from stable_baselines3.common.vec_env import DummyVecEnv
|
|
from stable_baselines3.common.monitor import Monitor
|
|
from stable_baselines3.common.evaluation import evaluate_policy
|
|
|
|
from street_fighter_custom_wrapper import StreetFighterCustomWrapper
|
|
|
|
RESET_ROUND = True # Reset the round when fight is over.
|
|
RENDERING = False
|
|
MODEL_PATH = r"trained_models/ppo_ryu_2000000_steps"
|
|
|
|
def make_env(game, state):
|
|
def _init():
|
|
env = retro.make(
|
|
game=game,
|
|
state=state,
|
|
use_restricted_actions=retro.Actions.FILTERED,
|
|
obs_type=retro.Observations.IMAGE
|
|
)
|
|
env = StreetFighterCustomWrapper(env, reset_round=RESET_ROUND, rendering=RENDERING)
|
|
env = Monitor(env)
|
|
return env
|
|
return _init
|
|
|
|
game = "StreetFighterIISpecialChampionEdition-Genesis"
|
|
env = make_env(game, state="Champion.Level12.RyuVsBison")()
|
|
model = PPO("CnnPolicy", env)
|
|
model.load(MODEL_PATH)
|
|
mean_reward, std_reward = evaluate_policy(model, env, render=False, n_eval_episodes=5, deterministic=False, return_episode_rewards=True)
|
|
print(mean_reward)
|
|
print(std_reward)
|
|
# print(f"Reward: {mean_reward:.2f} +/- {std_reward:.2f}")
|