street-fighter-ai/train_cv_sf2_ai.py
2023-03-28 01:31:23 +08:00

92 lines
2.8 KiB
Python

import gym
import cv2
import retro
import numpy as np
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv
from stable_baselines3.common.preprocessing import is_image_space, is_image_space_channels_first
from stable_baselines3.common.torch_layers import BaseFeaturesExtractor
import torch
import torch.nn as nn
# Custom feature extractor (CNN)
class CustomCNN(BaseFeaturesExtractor):
def __init__(self, observation_space: gym.Space):
super(CustomCNN, self).__init__(observation_space, features_dim=512)
self.cnn = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=8, stride=4, padding=0),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=0),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0),
nn.ReLU(),
nn.Flatten(),
nn.Linear(3136, self.features_dim),
nn.ReLU()
)
def forward(self, observations: torch.Tensor) -> torch.Tensor:
return self.cnn(observations)
# Custom environment wrapper for preprocessing
class CustomAtariWrapper(gym.Wrapper):
def __init__(self, env):
super().__init__(env)
# self.observation_space = gym.spaces.Box(low=0, high=255, shape=(84, 84, 1), dtype=np.uint8)
def _preprocess_observation(self, observation):
observation = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)
return np.expand_dims(observation, axis=-1)
def reset(self):
observation = self.env.reset()
return self._preprocess_observation(observation)
def step(self, action):
observation, reward, done, info = self.env.step(action)
return self._preprocess_observation(observation), reward, done, info
def make_env(game, state, seed=0):
def _init():
env = retro.RetroEnv(game=game, state=state, obs_type=retro.Observations.IMAGE)
env = CustomAtariWrapper(env)
env.seed(seed)
return env
return _init
def main():
# Set up the environment and model
game = "StreetFighterIISpecialChampionEdition-Genesis"
state_stages = [
"Champion.Level1.ChunLiVsGuile",
"Champion.Level2.ChunLiVsKen",
"Champion.Level3.ChunLiVsChunLi",
"Champion.Level4.ChunLiVsZangief",
# Add other stages as necessary
]
num_envs = 8
seed = 42
env = SubprocVecEnv([make_env(game, state_stages[0], seed=i) for i in range(num_envs)])
policy_kwargs = {
'features_extractor_class': CustomCNN
}
model = PPO(
"CnnPolicy",
env,
device="cuda",
policy_kwargs=policy_kwargs,
verbose=1
)
model.learn(total_timesteps=int(1000))
model.save("ppo_sf2_cnn")
if __name__ == "__main__":
main()
# missing reward function