street-fighter-ai/custom_sf2_cv_env.py

60 lines
2.4 KiB
Python

import gym
import cv2
import numpy as np
# Custom environment wrapper
class StreetFighterCustomWrapper(gym.Wrapper):
def __init__(self, env, win_template, lose_template, threshold=0.65):
super(StreetFighterCustomWrapper, self).__init__(env)
self.win_template = win_template
self.lose_template = lose_template
self.threshold = threshold
self.game_screen_gray = None
self.prev_player_health = 1.0
self.prev_opponent_health = 1.0
# Update observation space to single-channel grayscale image
self.observation_space = gym.spaces.Box(
low=0, high=255, shape=(84, 84, 1), dtype=np.uint8
)
def _preprocess_observation(self, observation):
self.game_screen_gray = cv2.cvtColor(observation, cv2.COLOR_BGR2GRAY)
# Print the size of self.game_screen_gray
# print("self.game_screen_gray size: ", self.game_screen_gray.shape)
# Print the size of the observation
# print("Observation size: ", observation.shape)
resized_image = cv2.resize(self.game_screen_gray, (84, 84), interpolation=cv2.INTER_AREA)
return np.expand_dims(resized_image, axis=-1)
def _check_game_over(self):
win_res = cv2.matchTemplate(self.game_screen_gray, self.win_template, cv2.TM_CCOEFF_NORMED)
lose_res = cv2.matchTemplate(self.game_screen_gray, self.lose_template, cv2.TM_CCOEFF_NORMED)
if np.max(win_res) >= self.threshold:
return True
if np.max(lose_res) >= self.threshold:
return True
return False
def _get_reward(self):
player_health_area = self.game_screen_gray[15:20, 32:120]
oppoent_health_area = self.game_screen_gray[15:20, 136:224]
# Get health points using the number of pixels above 129.
player_health = np.sum(player_health_area > 129) / player_health_area.size
opponent_health = np.sum(oppoent_health_area > 129) / oppoent_health_area.size
reward = player_health - opponent_health
return reward
def reset(self):
observation = self.env.reset()
return self._preprocess_observation(observation)
def step(self, action):
observation, _, _, info = self.env.step(action)
custom_reward = self._get_reward()
custom_done = self._check_game_over() or False
return self._preprocess_observation(observation), custom_reward, custom_done, info