mirror of
https://github.com/linyiLYi/street-fighter-ai.git
synced 2025-04-05 07:30:42 +00:00
Successfully trained a model (main/trained_models/) that crushes the final round of Street Fighter II Special Champion Edition.
69 lines
1.9 KiB
Python
69 lines
1.9 KiB
Python
import time
|
|
|
|
import retro
|
|
from stable_baselines3 import PPO
|
|
|
|
from street_fighter_custom_wrapper import StreetFighterCustomWrapper
|
|
|
|
RESET_ROUND = False # Reset the round when fight is over.
|
|
RENDERING = True
|
|
|
|
RANDOM_ACTION = False
|
|
MODEL_PATH = r"trained_models/ppo_ryu_7000000_steps"
|
|
|
|
def make_env(game, state):
|
|
def _init():
|
|
env = retro.make(
|
|
game=game,
|
|
state=state,
|
|
use_restricted_actions=retro.Actions.FILTERED,
|
|
obs_type=retro.Observations.IMAGE
|
|
)
|
|
env = StreetFighterCustomWrapper(env, reset_round=RESET_ROUND, rendering=RENDERING)
|
|
return env
|
|
return _init
|
|
|
|
game = "StreetFighterIISpecialChampionEdition-Genesis"
|
|
env = make_env(game, state="Champion.Level12.RyuVsBison")()
|
|
# model = PPO("CnnPolicy", env)
|
|
|
|
if not RANDOM_ACTION:
|
|
# model.load(MODEL_PATH)
|
|
model = PPO.load(MODEL_PATH, env=env)
|
|
|
|
# obs = env.reset()
|
|
done = False
|
|
|
|
num_episodes = 30
|
|
episode_reward_sum = 0
|
|
num_victory = 0
|
|
for _ in range(num_episodes):
|
|
done = False
|
|
obs = env.reset()
|
|
total_reward = 0
|
|
|
|
while not done:
|
|
timestamp = time.time()
|
|
|
|
if RANDOM_ACTION:
|
|
obs, reward, done, info = env.step(env.action_space.sample())
|
|
else:
|
|
action, _states = model.predict(obs)
|
|
obs, reward, done, info = env.step(action)
|
|
|
|
if reward != 0:
|
|
total_reward += reward
|
|
print("Reward: {:.3f}, playerHP: {}, enemyHP:{}".format(reward, info['agent_hp'], info['enemy_hp']))
|
|
|
|
if info['enemy_hp'] < 0:
|
|
print("Victory!")
|
|
num_victory += 1
|
|
print("Total reward: {}".format(total_reward))
|
|
episode_reward_sum += total_reward
|
|
|
|
env.close()
|
|
print("Winning rate: {}".format(1.0 * num_victory / num_episodes))
|
|
if RANDOM_ACTION:
|
|
print("Average reward for random action: {}".format(episode_reward_sum/num_episodes))
|
|
else:
|
|
print("Average reward for {}: {}".format(MODEL_PATH, episode_reward_sum/num_episodes)) |