mirror of
https://github.com/linyiLYi/street-fighter-ai.git
synced 2025-04-04 15:10:43 +00:00
73 lines
2.1 KiB
Python
73 lines
2.1 KiB
Python
import time
|
|
|
|
import retro
|
|
from stable_baselines3 import PPO
|
|
|
|
from street_fighter_custom_wrapper import StreetFighterCustomWrapper
|
|
|
|
def make_env(game, state):
|
|
def _init():
|
|
env = retro.make(
|
|
game=game,
|
|
state=state,
|
|
use_restricted_actions=retro.Actions.FILTERED,
|
|
obs_type=retro.Observations.IMAGE
|
|
)
|
|
env = StreetFighterCustomWrapper(env)
|
|
return env
|
|
return _init
|
|
|
|
game = "StreetFighterIISpecialChampionEdition-Genesis"
|
|
state_stages = [
|
|
"Champion.Level1.ChunLiVsGuile", # Average reward for random strategy: -102.3 | -20.4
|
|
"ChampionX.Level1.ChunLiVsKen", # Average reward for random strategy: -247.6
|
|
"Champion.Level2.ChunLiVsKen",
|
|
"Champion.Level3.ChunLiVsChunLi",
|
|
"Champion.Level4.ChunLiVsZangief",
|
|
"Champion.Level5.ChunLiVsDhalsim",
|
|
"Champion.Level6.ChunLiVsRyu",
|
|
"Champion.Level7.ChunLiVsEHonda",
|
|
"Champion.Level8.ChunLiVsBlanka",
|
|
"Champion.Level9.ChunLiVsBalrog",
|
|
"Champion.Level10.ChunLiVsVega",
|
|
"Champion.Level11.ChunLiVsSagat",
|
|
"Champion.Level12.ChunLiVsBison"
|
|
# Add other stages as necessary
|
|
]
|
|
|
|
env = make_env(game, state_stages[0])()
|
|
|
|
model = PPO(
|
|
"CnnPolicy",
|
|
env,
|
|
verbose=1
|
|
)
|
|
model_path = r"trained_models_level_1/ppo_chunli_1075200_steps"
|
|
model.load(model_path)
|
|
# Average reward for optuna/trial_1_best_model: -82.3
|
|
# Average reward for optuna/trial_9_best_model: 36.7 | -86.23
|
|
# Average reward for trained_models/ppo_chunli_5376000_steps: -77.8
|
|
|
|
|
|
obs = env.reset()
|
|
done = False
|
|
|
|
num_episodes = 30
|
|
episode_reward_sum = 0
|
|
for _ in range(num_episodes):
|
|
done = False
|
|
obs = env.reset()
|
|
total_reward = 0
|
|
while not done:
|
|
timestamp = time.time()
|
|
obs, reward, done, info = env.step(env.action_space.sample())
|
|
|
|
if reward != 0:
|
|
total_reward += reward
|
|
print("Reward: {}, playerHP: {}, enemyHP:{}".format(reward, info['health'], info['enemy_health']))
|
|
env.render()
|
|
print("Total reward: {}".format(total_reward))
|
|
episode_reward_sum += total_reward
|
|
|
|
env.close()
|
|
print("Average reward for {}: {}".format(model_path, episode_reward_sum/num_episodes)) |