street-fighter-ai/000_image_stack_ram_based_reward_ai_generated/train.py
2023-04-03 00:19:56 +08:00

153 lines
5.4 KiB
Python

import os
import random
import retro
from stable_baselines3 import PPO
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.callbacks import BaseCallback, CheckpointCallback
from rmsprop_optim import RMSpropTF
from custom_cnn import CustomCNN
from street_fighter_custom_wrapper import StreetFighterCustomWrapper
LOG_DIR = 'logs/'
class RandomOpponentChangeCallback(BaseCallback):
def __init__(self, stages, opponent_interval, verbose=0):
super(RandomOpponentChangeCallback, self).__init__(verbose)
self.stages = stages
self.opponent_interval = opponent_interval
def _on_step(self) -> bool:
if self.n_calls % self.opponent_interval == 0:
new_state = random.choice(self.stages)
print("\nCurrent state:", new_state)
self.training_env.env_method("load_state", new_state, indices=None)
return True
# class StageIncreaseCallback(BaseCallback):
# def __init__(self, stages, stage_interval, save_dir, verbose=0):
# super(StageIncreaseCallback, self).__init__(verbose)
# self.stages = stages
# self.stage_interval = stage_interval
# self.save_dir = save_dir
# self.current_stage = 0
# def _on_step(self) -> bool:
# if self.n_calls % self.stage_interval == 0 and self.current_stage < len(self.stages) - 1:
# self.current_stage += 1
# new_state = self.stages[self.current_stage]
# self.training_env.env_method("load_state", new_state, indices=None)
# self.model.save(os.path.join(self.save_dir, f"ppo_chunli_stage_{self.current_stage}.zip"))
# return True
def make_env(game, state):
def _init():
env = retro.make(
game=game,
state=state,
use_restricted_actions=retro.Actions.FILTERED,
obs_type=retro.Observations.IMAGE
)
env = StreetFighterCustomWrapper(env)
return env
return _init
def main():
# Set up the environment and model
game = "StreetFighterIISpecialChampionEdition-Genesis"
state_stages = [
"Champion.Level1.ChunLiVsGuile", # Average reward for random strategy: -102.3
"Champion.Level2.ChunLiVsKen",
"Champion.Level3.ChunLiVsChunLi",
"Champion.Level4.ChunLiVsZangief",
"Champion.Level5.ChunLiVsDhalsim",
"Champion.Level6.ChunLiVsRyu",
"Champion.Level7.ChunLiVsEHonda",
"Champion.Level8.ChunLiVsBlanka",
"Champion.Level9.ChunLiVsBalrog",
"Champion.Level10.ChunLiVsVega",
"Champion.Level11.ChunLiVsSagat",
"Champion.Level12.ChunLiVsBison"
# Add other stages as necessary
]
# state_stages = [
# "ChampionX.Level1.ChunLiVsKen", # Average reward for random strategy: -247.6
# "ChampionX.Level2.ChunLiVsChunLi",
# "ChampionX.Level3.ChunLiVsZangief",
# "ChampionX.Level4.ChunLiVsDhalsim",
# "ChampionX.Level5.ChunLiVsRyu",
# "ChampionX.Level6.ChunLiVsEHonda",
# "ChampionX.Level7.ChunLiVsBlanka",
# "ChampionX.Level8.ChunLiVsGuile",
# "ChampionX.Level9.ChunLiVsBalrog",
# "ChampionX.Level10.ChunLiVsVega",
# "ChampionX.Level11.ChunLiVsSagat",
# "ChampionX.Level12.ChunLiVsBison"
# # Add other stages as necessary
# ]
# Champion is at difficulty level 4, ChampionX is at difficulty level 8.
env = make_env(game, state_stages[0])()
env = Monitor(env, LOG_DIR)
model = PPO(
"CnnPolicy",
env,
device="cuda",
verbose=1,
n_steps=35840, # 64 * 56
batch_size=64,
learning_rate=6e-5,
ent_coef=0.01,
clip_range=0.15487,
gamma=0.9483,
gae_lambda=0.81322,
tensorboard_log="logs/"
)
# Set the save directory
save_dir = "trained_models_level_1"
os.makedirs(save_dir, exist_ok=True)
# Load the model from file
# model_path = "trained_models/ppo_chunli_1296000_steps.zip"
# Load model and modify the learning rate and entropy coefficient
# custom_objects = {
# "learning_rate": 0.0002
# }
# model = PPO.load(model_path, env=env, device="cuda")#, custom_objects=custom_objects)
# Set up callbacks
# opponent_interval = 35840 # stage_interval * num_envs = total_steps_per_stage
checkpoint_interval = 358400 # checkpoint_interval * num_envs = total_steps_per_checkpoint (Every 80 rounds)
checkpoint_callback = CheckpointCallback(save_freq=checkpoint_interval, save_path=save_dir, name_prefix="ppo_chunli")
# stage_increase_callback = RandomOpponentChangeCallback(state_stages, opponent_interval, save_dir)
# model_params = {
# 'n_steps': 5,
# 'gamma': 0.99,
# 'gae_lambda':1,
# 'learning_rate': 7e-4,
# 'vf_coef': 0.5,
# 'ent_coef': 0.0,
# 'max_grad_norm':0.5,
# 'rms_prop_eps':1e-05
# }
# model = A2C('CnnPolicy', env, tensorboard_log='logs/', verbose=1, **model_params, policy_kwargs=dict(optimizer_class=RMSpropTF))
model.learn(
total_timesteps=int(5376000), # total_timesteps = stage_interval * num_envs * num_stages (1120 rounds)
callback=[checkpoint_callback]#, stage_increase_callback]
)
env.close()
# Save the final model
model.save(os.path.join(save_dir, "ppo_sf2_chunli_final.zip"))
if __name__ == "__main__":
main()