mirror of
https://github.com/linyiLYi/street-fighter-ai.git
synced 2025-04-04 23:20:43 +00:00
83 lines
2.2 KiB
Python
83 lines
2.2 KiB
Python
import time
|
|
|
|
import cv2
|
|
import torch
|
|
import gym
|
|
import retro
|
|
import numpy as np
|
|
from stable_baselines3 import PPO
|
|
from stable_baselines3.common.vec_env import DummyVecEnv
|
|
|
|
from custom_cnn import CustomCNN
|
|
from mobilenet_extractor import MobileNetV3Extractor
|
|
from custom_sf2_cv_env import StreetFighterCustomWrapper
|
|
|
|
def make_env(game, state, seed=0):
|
|
def _init():
|
|
win_template = cv2.imread('images/pattern_win_gray.png', cv2.IMREAD_GRAYSCALE)
|
|
lose_template = cv2.imread('images/pattern_lose_gray.png', cv2.IMREAD_GRAYSCALE)
|
|
env = retro.RetroEnv(
|
|
game=game,
|
|
state=state,
|
|
use_restricted_actions=retro.Actions.FILTERED,
|
|
obs_type=retro.Observations.IMAGE
|
|
)
|
|
env = StreetFighterCustomWrapper(env, win_template, lose_template, testing=True)
|
|
# env.seed(seed)
|
|
return env
|
|
return _init
|
|
|
|
game = "StreetFighterIISpecialChampionEdition-Genesis"
|
|
state_stages = [
|
|
"Champion.Level1.ChunLiVsGuile",
|
|
"Champion.Level2.ChunLiVsKen",
|
|
"Champion.Level3.ChunLiVsChunLi",
|
|
"Champion.Level4.ChunLiVsZangief",
|
|
"Champion.Level5.ChunLiVsDhalsim",
|
|
"Champion.Level6.ChunLiVsRyu",
|
|
"Champion.Level7.ChunLiVsEHonda",
|
|
"Champion.Level8.ChunLiVsBlanka",
|
|
"Champion.Level9.ChunLiVsBalrog",
|
|
"Champion.Level10.ChunLiVsVega",
|
|
"Champion.Level11.ChunLiVsSagat",
|
|
"Champion.Level12.ChunLiVsBison"
|
|
# Add other stages as necessary
|
|
]
|
|
|
|
env = make_env(game, state_stages[0])()
|
|
|
|
# Wrap the environment
|
|
env = DummyVecEnv([lambda: env])
|
|
|
|
# policy_kwargs = {
|
|
# 'features_extractor_class': CustomCNN
|
|
# }
|
|
|
|
# Using MobileNetV3 as the feature extractor
|
|
policy_kwargs = {
|
|
'features_extractor_class': MobileNetV3Extractor
|
|
}
|
|
|
|
model = PPO(
|
|
"CnnPolicy",
|
|
env,
|
|
device="cuda",
|
|
policy_kwargs=policy_kwargs,
|
|
verbose=1
|
|
)
|
|
model.load(r"trained_models_cv_mobilenet_time_penalty/ppo_chunli_1296000_steps")
|
|
|
|
obs = env.reset()
|
|
done = False
|
|
|
|
while True:
|
|
timestamp = time.time()
|
|
action, _ = model.predict(obs)
|
|
obs, rewards, done, info = env.step(action)
|
|
env.render()
|
|
render_time = time.time() - timestamp
|
|
if render_time < 0.0111:
|
|
time.sleep(0.0111 - render_time) # Add a delay for 90 FPS
|
|
|
|
# env.close()
|